Menu Close

Category: None

each-J-z-Y-z-are-linear-independent-W-Ronskian-J-z-Y-z-determinant-J-z-Y-z-J-z-Y-z-J-1-z-Y-z-J-z-Y-1-z-J-1-

Question Number 220502 by SdC355 last updated on 14/May/25 $$\mathrm{each}\:{J}_{\nu} \left({z}\right),{Y}_{\nu} \left({z}\right)\:\mathrm{are}\:\mathrm{linear}\:\mathrm{independent}….?? \\ $$$${W}_{\mathrm{Ronskian}} \left\{{J}_{\nu} ^{\:} \left({z}\right),{Y}_{\nu} \left({z}\right)\right\}=\begin{vmatrix}{{J}_{\nu} \left({z}\right)}&{\:{Y}_{\nu} \left({z}\right)}\\{{J}_{\nu} '\left({z}\right)}&{{Y}_{\nu} '\left({z}\right)}\end{vmatrix} \\ $$$$={J}_{\nu} ^{\left(\mathrm{1}\right)}…

Can-you-guys-teach-me-about-Weber-function-E-z-and-Anger-function-J-z-Let-s-Consider-n-dimensional-Euclidean-Space-and-function-f-f-R-n-R-Helmholtz-Equation-defined-as-2-k-2-f-0-an

Question Number 220480 by SdC355 last updated on 13/May/25 $$\mathrm{Can}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{about} \\ $$$$\mathrm{Weber}\:\mathrm{function}\:\boldsymbol{\mathrm{E}}_{\nu} \left({z}\right)\:\mathrm{and}\:\mathrm{Anger}\:\mathrm{function}\:\boldsymbol{\mathrm{J}}_{\nu} \left({z}\right)?? \\ $$$$\: \\ $$$$\mathrm{Let}'\mathrm{s}\:\mathrm{Consider}\:{n}-\mathrm{dimensional}\:\mathrm{Euclidean}\:\mathrm{Space} \\ $$$$\mathrm{and}\:\mathrm{function}\:{f}\:,\:{f};\mathbb{R}^{{n}} \rightarrow\mathbb{R} \\ $$$$\mathrm{Helmholt}{z}\:\mathrm{Equation}\:\mathrm{defined}\:\mathrm{as} \\ $$$$\left(\bigtriangledown^{\mathrm{2}}…

Question-220393

Question Number 220393 by Hanuda354 last updated on 12/May/25 Commented by Hanuda354 last updated on 12/May/25 $$\mathrm{ABCD}\:\:\mathrm{is}\:\:\mathrm{a}\:\:\mathrm{square}.\:\mathrm{Find}\:\:\mathrm{the}\:\:\mathrm{value}\:\:\mathrm{of}\:\:{x}. \\ $$ Answered by mr W last updated…

Question-220388

Question Number 220388 by MrGaster last updated on 12/May/25 Commented by MrGaster last updated on 12/May/25 When\(n\)is an integer and\(x\)is a positive number,is the sum of\(J_n(x)\cdot J{n+2}(x)\)over\(n\)equal to 0?If so,how to prove it? Terms of Service Privacy Policy Contact: info@tinkutara.com

sin-sin-pi-sin-2pi-sin-npi-when-n-is-an-odd-integer-

Question Number 220390 by MATHEMATICSAM last updated on 12/May/25 $$\mathrm{sin}\theta\:+\:\mathrm{sin}\left(\pi\:+\:\theta\right)\:+\:\mathrm{sin}\left(\mathrm{2}\pi\:+\:\theta\right)\:+\:…\: \\ $$$$+\:\mathrm{sin}\left({n}\pi\:+\:\theta\right)\:=\:?\:\mathrm{when}\:{n}\:\mathrm{is}\:\mathrm{an}\:\mathrm{odd} \\ $$$$\mathrm{integer}. \\ $$ Answered by mr W last updated on 12/May/25 $$\mathrm{sin}\:\left({k}\pi+\theta\right)=\mathrm{sin}\:{k}\pi\:\mathrm{cos}\:\theta+\mathrm{cos}\:{k}\pi\:\mathrm{sin}\:\theta…

Prove-equation-0-f-u-g-u-e-u-du-1-2pii-i-i-F-u-G-u-du-F-u-0-f-t-e-ut-dt-G-u-0-g-t-e-ut-dt-

Question Number 220377 by SdC355 last updated on 12/May/25 $$\mathrm{Prove}\:\mathrm{equation} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({u}\right)\mathrm{g}\left({u}\right){e}^{−{u}\rho} \mathrm{d}{u}=\frac{\mathrm{1}}{\mathrm{2}\pi\boldsymbol{{i}}}\:\int_{−\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} ^{\:+\infty\boldsymbol{{i}}+\boldsymbol{\gamma}} \:\:{F}\left({u}\right){G}\left({u}−\rho\right)\mathrm{d}{u} \\ $$$${F}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty} \:{f}\left({t}\right){e}^{−{ut}} \mathrm{d}{t} \\ $$$${G}\left({u}\right)=\int_{\mathrm{0}} ^{\:\infty}…

solve-the-system-of-equation-using-gaussian-elimination-method-x-2y-3z-10-2x-3y-z-1-3x-y-2z-9-

Question Number 220366 by klipto last updated on 11/May/25 $$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{system}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{equation}} \\ $$$$\boldsymbol{\mathrm{using}}\:\boldsymbol{\mathrm{gaussian}}\:\boldsymbol{\mathrm{elimination}}\:\boldsymbol{\mathrm{method}} \\ $$$$\boldsymbol{\mathrm{x}}+\mathrm{2}\boldsymbol{\mathrm{y}}+\mathrm{3}\boldsymbol{\mathrm{z}}=\mathrm{10} \\ $$$$\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3}\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{z}}=\mathrm{1} \\ $$$$\mathrm{3}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}−\mathrm{2}\boldsymbol{\mathrm{z}}=\mathrm{9} \\ $$ Answered by Frix last updated…

Question-220321

Question Number 220321 by SdC355 last updated on 11/May/25 Commented by MathematicalUser2357 last updated on 11/May/25 한국인이세요? 대답하실거면 제 댓글 위에 있는 점 세 개를 누르고 Plain Text Comment 이라는 버튼을 눌러서 대답해 주세요 Commented by SdC355 last updated on 11/May/25 네 한국인이요 ㅋㅋㅋ방가요…