Menu Close

Category: None

This-might-be-helpful-How-to-easily-calculate-z-1-z-2-with-z-1-z-2-C-Transform-z-1-re-i-and-z-2-a-bi-z-1-z-2-re-i-a-bi-z-1-z-2-r-a-bi-e-b-ia-z-1-z-2-r-a-e-

Question Number 192580 by Frix last updated on 21/May/23 $$\mathrm{This}\:\mathrm{might}\:\mathrm{be}\:\mathrm{helpful}: \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{easily}\:\mathrm{calculate}\:{z}_{\mathrm{1}} ^{{z}_{\mathrm{2}} } \:\mathrm{with}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} \:\in\mathbb{C}: \\ $$$$\mathrm{Transform}\:{z}_{\mathrm{1}} ={r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{and}\:{z}_{\mathrm{2}} ={a}+{b}\mathrm{i}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} ^{{z}_{\mathrm{2}}…

Let-ABCD-be-a-rectangle-having-an-area-of-290-Let-E-be-on-BC-such-that-BE-BC-3-2-Let-F-be-on-CD-such-that-CF-FD-3-1-If-G-is-the-intersection-of-AE-and-BF-

Question Number 192572 by naka3546 last updated on 21/May/23 $$\mathrm{Let}\:\:{ABCD}\:\:\mathrm{be}\:\:\mathrm{a}\:\:\mathrm{rectangle}\:\:\mathrm{having}\:\:\mathrm{an}\:\mathrm{area}\:\:\mathrm{of}\:\:\mathrm{290}. \\ $$$$\mathrm{Let}\:\:{E}\:\:\mathrm{be}\:\:\mathrm{on}\:\:{BC}\:\:\mathrm{such}\:\:\mathrm{that}\:\:{BE}\::\:{BC}\:=\:\mathrm{3}\::\:\mathrm{2}. \\ $$$$\mathrm{Let}\:\:{F}\:\:\mathrm{be}\:\:\mathrm{on}\:\:{CD}\:\:\mathrm{such}\:\:\mathrm{that}\:\:{CF}\::\:{FD}\:=\:\mathrm{3}\::\:\mathrm{1}. \\ $$$$\mathrm{If}\:\:{G}\:\:\mathrm{is}\:\:\mathrm{the}\:\:\mathrm{intersection}\:\:\mathrm{of}\:\:{AE}\:\:\mathrm{and}\:\:{BF},\:\:\mathrm{compute} \\ $$$$\mathrm{the}\:\:\mathrm{area}\:\:\mathrm{of}\:\:\bigtriangleup{BEG}. \\ $$ Terms of Service Privacy Policy…

Question-127012

Question Number 127012 by Algoritm last updated on 26/Dec/20 Answered by Olaf last updated on 26/Dec/20 $$\begin{cases}{{y}_{\mathrm{1}} '\:=\:{y}_{\mathrm{1}} +{y}_{\mathrm{2}} +\:{x}\:\left(\mathrm{1}\right)}\\{{y}_{\mathrm{2}} '\:=\:{y}_{\mathrm{1}} −\mathrm{2}{y}_{\mathrm{2}} +\mathrm{2}{x}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{1}\right)\::\:{y}_{\mathrm{2}}…

Question-61461

Question Number 61461 by aliesam last updated on 02/Jun/19 Answered by MJS last updated on 03/Jun/19 $$\mathrm{sin}\:{x}\:+\mathrm{sin}\:{y}\:={a} \\ $$$$\mathrm{cos}\:{x}\:+\mathrm{cos}\:{y}\:={b} \\ $$$${u}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\wedge\:{v}=\mathrm{tan}\:\frac{{y}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\left[\mathrm{sin}\:\mathrm{2arctan}\:{t}\:=\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} };\:\mathrm{cos}\:\mathrm{2arctan}\:{t}\:=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}}…