Menu Close

Category: None

ABC-have-the-sides-of-length-10-13-13-while-PQR-have-the-sides-of-length-13-13-24-Find-the-ratio-of-Area-of-ABC-Area-of-PQR-

Question Number 125758 by ZiYangLee last updated on 13/Dec/20 $$\Delta\mathrm{ABC}\:\mathrm{have}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{length}\:\mathrm{10}\:\mathrm{13}\:\mathrm{13} \\ $$$$\mathrm{while}\:\Delta\mathrm{PQR}\:\mathrm{have}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{length} \\ $$$$\mathrm{13}\:\mathrm{13}\:\mathrm{24}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{Area}\:\mathrm{of}\:\Delta\mathrm{ABC}\::\:\mathrm{Area} \\ $$$$\mathrm{of}\:\Delta\mathrm{PQR}. \\ $$ Answered by mr W last…

a-x-a-x-b-solve-for-x-did-i-make-anything-wrong-in-the-following-starpoint-ln-a-ln-x-a-x-b-ln-a-ln-x-a-ln-x-b-ln-a-ln-x-a-ln-x-b-ln-a-ln-x-ln-a-ln-x-ln-b-ln-a-ln-x-

Question Number 191254 by anr0h3 last updated on 21/Apr/23 $$ \\ $$$${a}=\frac{{x}−{a}}{{x}−{b}}\:{solve}\:{for}\:{x} \\ $$$$\mathrm{did}\:\mathrm{i}\:\mathrm{make}\:\mathrm{anything}\:\mathrm{wrong}\:\mathrm{in}\:\mathrm{the}\:\mathrm{following}? \\ $$$$ \\ $$$$\mathrm{starpoint}: \\ $$$${ln}\mid{a}\mid={ln}\mid\frac{{x}−{a}}{{x}−{b}}\mid \\ $$$${ln}\mid{a}\mid={ln}\mid{x}−{a}\mid−{ln}\mid{x}−{b}\mid \\ $$$${ln}\mid{a}\mid={ln}\mid\frac{{x}}{{a}}\mid−{ln}\mid\frac{{x}}{{b}}\mid \\…

Join-Telegram-group-booksforjee-To-get-evry-books-pdfs-related-to-NEET-JEE-MAIN-ADVANCED-and-all-engineering-entrance-exam-books-Also-Books-for-class-XII-XI-X-IX-

Question Number 60152 by Kunal12588 last updated on 18/May/19 $${Join}\:{Telegram}\:{group} \\ $$$$@{booksforjee} \\ $$$${To}\:{get}\:{evry}\:{books}\:{pdfs} \\ $$$${related}\:{to}\:{NEET},\:{JEE}\left({MAIN}\:{ADVANCED}\right) \\ $$$${and}\:{all}\:{engineering}\:{entrance}\:{exam}\:{books} \\ $$$${Also} \\ $$$${Books}\:{for}\:{class}\:{XII},{XI},{X},{IX} \\ $$ Commented…

Solve-this-differential-equation-q-t-1-LC-q-t-V-L-with-L-C-V-R-3-

Question Number 125685 by Hassen_Timol last updated on 12/Dec/20 $$ \\ $$$$\mathrm{Solve}\:\mathrm{this}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$ \\ $$$$\:\:\:\:\:{q}_{\left({t}\right)} ''\:\:+\:\:\frac{\mathrm{1}}{\mathrm{LC}}\:{q}_{\left({t}\right)} \:\:=\:\:\frac{{V}}{{L}} \\ $$$$ \\ $$$$\mathrm{with}\:\left(\mathrm{L},\mathrm{C},\mathrm{V}\right)\:\in\:\mathbb{R}^{\mathrm{3}} \\ $$$$ \\…

Question-125673

Question Number 125673 by aurpeyz last updated on 12/Dec/20 Answered by bramlexs22 last updated on 13/Dec/20 $$\left(\mathrm{1}\right){a}+{ar}+{ar}^{\mathrm{2}} \:=\:{p}\:;{a}\left(\mathrm{1}+{r}+{r}^{\mathrm{2}} \right)={p} \\ $$$$\left(\mathrm{2}\right){a}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{2}} +{a}^{\mathrm{2}} {r}^{\mathrm{4}}…