Question Number 219637 by SdC355 last updated on 30/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{{J}_{\nu} \left({s}\right){e}^{−\mu{s}} }{\:\sqrt{{s}^{\mathrm{2}} +{R}^{\mathrm{2}} }}\mathrm{d}{s}\:,\:\left(\nu,\mu\in\mathbb{R}^{+} \:,\:\mathrm{R}\in\mathbb{R}^{+} \backslash\left\{\mathrm{0}\right\}\right) \\ $$ Terms of Service Privacy Policy…
Question Number 219663 by MrGaster last updated on 30/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219662 by MrGaster last updated on 30/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219649 by SdC355 last updated on 30/Apr/25 $$\mathrm{Solve}\:{y}^{\left(\mathrm{2}\right)} \left({t}\right)−{t}\centerdot{y}\left({t}\right)=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219580 by SdC355 last updated on 29/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{\nu} \left({kt}\right){e}^{−{t}} \:\mathrm{d}{t} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219581 by nothing48 last updated on 29/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 219579 by SdC355 last updated on 29/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\mathrm{sin}\left({t}\right){J}_{\nu} \left({kt}\right)\:\mathrm{d}{t} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\:{t}\centerdot{J}_{\nu} \left({at}\right){J}_{\nu} \left({kt}\right)\:\mathrm{d}{t} \\ $$ Terms of Service Privacy…
Question Number 219577 by SdC355 last updated on 29/Apr/25 $$\mathrm{prove} \\ $$$$\underset{{n}\:\mathrm{times}} {\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} …\int_{\mathrm{0}} ^{\:\mathrm{1}} }\:\:{x}_{\mathrm{1}} ^{\alpha} {x}_{\mathrm{2}} ^{\alpha} ….{x}_{{n}} ^{\alpha} \mathrm{ln}\left({x}_{\mathrm{1}}…
Question Number 219574 by SdC355 last updated on 29/Apr/25 $$\int_{\mathrm{0}} ^{\:\infty} \:\:\frac{\mathrm{sin}\left({z}\right)}{{z}\left({z}^{\mathrm{2}} +\mathrm{4}\right)}\:\mathrm{d}{z}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \:\:\left(\frac{\mathrm{sin}\left({z}\right)}{{z}}−\frac{\mathrm{sin}\left({z}\right)}{\mathrm{2}{z}+\mathrm{4}\boldsymbol{{i}}}−\frac{\mathrm{sin}\left({z}\right)}{\mathrm{2}{z}−\mathrm{4}\boldsymbol{{i}}}\right)\:\mathrm{d}{z} \\ $$$$\mathrm{and}\:\mathrm{next}….??? \\ $$$$\mathrm{2}\pi\boldsymbol{{i}}\underset{{j}=\mathrm{1}} {\overset{{M}} {\sum}}\:\:\mathrm{Res}_{{h}={a}_{{j}} } \left\{{f}\left({h}\right)\right\}…. \\ $$…
Question Number 219571 by SdC355 last updated on 29/Apr/25 $$\mathrm{pls}\:\mathrm{Help}…..! \\ $$$$\mathrm{prove} \\ $$$$\int\int_{\:\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{g}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}=\mathrm{0}\:\leftrightarrows\:\mathrm{div}\:\overset{\rightarrow} {\boldsymbol{\mathrm{g}}}=\mathrm{0} \\ $$ Answered by aleks041103 last updated…