Question Number 219338 by SdC355 last updated on 23/Apr/25 $$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}=−{x}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −{y}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{z}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)=\begin{cases}{\left(\mathrm{2}+\mathrm{3sin}\left({u}\right)\right)\mathrm{cos}\left({v}\right)}\\{\left(\mathrm{2}+\mathrm{3sin}\left({v}\right)\right)\mathrm{sin}\left({u}\right)}\\{\mathrm{3cos}\left({u}\right)}\end{cases} \\ $$$${u}\in\left[\mathrm{0},\mathrm{2}\pi\right]\:,\:{v}\in\left[\mathrm{0},\mathrm{2}\pi\right] \\ $$$$\int\int_{\:\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow}…
Question Number 219333 by SdC355 last updated on 23/Apr/25 $$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)=−{xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +{yz}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −{xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathcal{S}}}\left({u},{v}\right)\begin{cases}{\left(\mathrm{2}+{v}\centerdot\mathrm{cos}\left({u}\right)\right)\mathrm{sin}\left(\mathrm{2}\pi{v}\right)}\\{{v}\centerdot\mathrm{cos}\left({u}\right)}\\{\left(\mathrm{2}+{v}\centerdot\mathrm{cos}\left({u}\right)\right)\mathrm{cos}\left(\mathrm{2}\pi{v}\right)+\mathrm{2}{v}−\mathrm{2}}\end{cases} \\ $$$${u}\in\left[−\pi,\pi\right]\:,\:{v}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right] \\ $$$$\int\int_{\:\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow}…
Question Number 219301 by SdC355 last updated on 22/Apr/25 $${f}\left({s}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\boldsymbol{{i}}\omega\left({s}−\alpha\right)} \mathrm{d}\omega\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{2}\pi}\left[{e}^{−{st}} \:\int_{\:−\infty} ^{\:+\infty} \:\:{e}^{−\boldsymbol{{i}}\omega\left({s}−\alpha\right)} \mathrm{d}\omega\right]\mathrm{d}{s}=….? \\ $$ Terms of…
Question Number 219182 by skcusb last updated on 20/Apr/25 Commented by MathematicalUser2357 last updated on 22/Apr/25 $$\int{y}^{\mathrm{2}} \left({y}+\mathrm{2}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} {dy} \\ $$ Answered by MrGaster last…
Question Number 219087 by fantastic last updated on 19/Apr/25 Answered by mahdipoor last updated on 19/Apr/25 $${DE}=\mathrm{2}{r}−{AD}−{EB}=\mathrm{2}{r}−\left({d}\right)−\left({r}−{d}\right)={r} \\ $$$$\frac{\pi}{\mathrm{2}}\left(\left(\mathrm{2}{r}\right)^{\mathrm{2}} −\left({r}\right)^{\mathrm{2}} \right)=\mathrm{1}.\mathrm{5}\pi{r}^{\mathrm{2}} \\ $$ Commented by…
Question Number 219004 by Mamadi last updated on 18/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 218914 by SdC355 last updated on 17/Apr/25 $$\mathrm{prove} \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{\nu} \left(\alpha{t}\right){J}_{\nu} \left(\beta{t}\right)\mathrm{d}{t}=\frac{\mathrm{2}}{\pi}\centerdot\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\left(\alpha−\beta\right)\right)}{\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} } \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{t}\centerdot{J}_{\nu} \left(\alpha{t}\right){J}_{\nu} \left(\beta{t}\right)\mathrm{d}{t}=\frac{\mathrm{1}}{\alpha}\centerdot\delta\left(\alpha−\beta\right) \\…
Question Number 218975 by SdC355 last updated on 18/Apr/25 $$\mathrm{In}\:\mathrm{physics}\:,\:\mathrm{Flux}\:\mathrm{integral}\:\oint_{\:\partial\boldsymbol{\mathcal{S}}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\:\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{concept}\:\mathrm{that}\:\mathrm{widely}\:\mathrm{used}\:\mathrm{in}\:\mathrm{eletric}\:\mathrm{equation}\:\mathrm{or} \\ $$$$\mathrm{Heat}\:\mathrm{Eqaution} \\ $$$$\mathrm{for}\:\mathrm{example}…..\: \\ $$$$\oint_{\:{A}} \:\overset{\rightarrow} {\boldsymbol{\mathrm{D}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{A}}}={Q}_{\mathrm{0}} \:\left(\mathrm{Gauss}\:\mathrm{law}\right)\:\overset{\rightarrow}…
Question Number 218857 by SdC355 last updated on 16/Apr/25 $$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\:\frac{\mathrm{d}{x}\left({t}\right)}{\mathrm{d}{t}}−\left({x}\left({t}\right)\right)^{\mathrm{2}} ={k}_{\mathrm{0}} ^{\mathrm{2}} …?? \\ $$$$\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{Differantial}\:\mathrm{Equation}…??? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 218792 by sonukgindia last updated on 15/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com