Menu Close

Category: None

J-z-

Question Number 218767 by SdC355 last updated on 15/Apr/25 $$\underset{\ell\in\left(−\infty,\infty\right)} {\sum}\:{J}_{\ell} \left({z}\right)=?? \\ $$ Answered by MrGaster last updated on 15/Apr/25 $$\underset{\ell\in\left(−\infty,\infty\right)} {\sum}{J}_{\ell} \left({z}\right)=\mathrm{exp}\left(\frac{{z}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}}\right)\right)=\mathrm{exp}\left(\mathrm{0}\right)=\mathrm{1} \\…

resolve-the-equation-with-unknow-p-P-is-polynom-1-P-X-2-X-2-1-P-X-2-P-0P-P-

Question Number 218656 by Mamadi last updated on 14/Apr/25 $${resolve}\:{the}\:{equation}\:{with}\:{unknow}\:{p} \\ $$$${P}\:\:{is}\:{polynom}\: \\ $$$$\left.\mathrm{1}\right)\:{P}\left({X}^{\mathrm{2}} \right)=\left({X}^{\mathrm{2}} +\mathrm{1}\right){P}\left({X}\right) \\ $$$$\left.\mathrm{2}\right)\:{P}\:\mathrm{0}{P}\:={P} \\ $$ Answered by MrGaster last updated…

Can-y-x-be-expressed-as-them-su-of-two-periodic-functions-

Question Number 218609 by MrGaster last updated on 13/Apr/25 $$\mathrm{Can}\:{y}={x}\:\mathrm{be}\:\mathrm{expressed}\:\mathrm{as}\:\mathrm{them} \\ $$$$\mathrm{su}\:\mathrm{of}\:\mathrm{two}\:\mathrm{periodic}\:\mathrm{functions}? \\ $$ Answered by MrGaster last updated on 13/Apr/25 $$\mathbb{R}\in{x}={f}\left({x}\right)+{g}\left({x}\right)\:\exists{T}_{\mathrm{1}\:} ,{T}\mathrm{2}>\mathrm{0}:{f}\left({x}+{T}_{\mathrm{1}} \right)−{f}\left({x}\right)\wedge{g}\left({x}+{T}_{\mathrm{2}\:} \right)={g}\left({x}\right)\:\forall{x}\in\mathbb{R}…

Question-218629

Question Number 218629 by galisamikshareddy last updated on 13/Apr/25 Answered by galisamikshareddy last updated on 13/Apr/25 $${no}.{of}\:{hours}\:{rehana}\:{works}\:{each}\:{day}\: \\ $$$$=\mathrm{3}\frac{\mathrm{1}}{\mathrm{2}}\:{hours}\: \\ $$$$=\frac{\mathrm{5}}{\mathrm{2}}\:{hours} \\ $$$${no}.{of}\:{days}\:{she}\:{completed}\:{her}\:{work}\: \\ $$$$=\:\mathrm{7}{days}…

why-my-answer-is-delete-Tinkutara-why-you-ignore-my-effort-

Question Number 218596 by SdC355 last updated on 12/Apr/25 $$\mathrm{why}\:\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{delete}???? \\ $$$$\mathrm{Tinkutara}\:\mathrm{why}\:\mathrm{you}\:\mathrm{ignore}\:\mathrm{my}\:\mathrm{effort} \\ $$ Commented by Ghisom last updated on 12/Apr/25 $$\mathrm{maybe}\:\mathrm{post}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{as}\:\mathrm{answer}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{question}\:\mathrm{instead}\:\mathrm{of}\:\mathrm{opening}\:\mathrm{a}\:\mathrm{new} \\…

Solve-2-w-t-2-c-2-2-w-x-2-w-0-t-f-t-lim-x-w-x-t-0-Boundary-Condition-w-x-0-0-w-t-x-0-0-Initial-Condition-f-t-sin-t-t-0-2pi-0-otherwise-

Question Number 218539 by SdC355 last updated on 11/Apr/25 $${S}\mathrm{olve} \\ $$$$\frac{\partial^{\mathrm{2}} {w}}{\partial{t}^{\mathrm{2}} }={c}^{\mathrm{2}} \frac{\partial^{\mathrm{2}} {w}}{\partial{x}^{\mathrm{2}} } \\ $$$${w}\left(\mathrm{0},{t}\right)={f}\left({t}\right)\:,\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{w}\left({x},{t}\right)=\mathrm{0}\:\left(\mathrm{Boundary}\:\mathrm{Condition}\right) \\ $$$${w}\left({x},\mathrm{0}\right)=\mathrm{0}\:,\:{w}_{{t}} \left({x},\mathrm{0}\right)=\mathrm{0}\:\left(\mathrm{Initial}\:\mathrm{Condition}\right) \\ $$$${f}\left({t}\right)\begin{cases}{\mathrm{sin}\left({t}\right)\:,\:{t}\in\left[\mathrm{0},\mathrm{2}\pi\right)}\\{\mathrm{0}\:,\:\mathrm{otherwise}}\end{cases}…