Question Number 218534 by SdC355 last updated on 11/Apr/25 $$\mathrm{I}\:\mathrm{Find}\:\mathrm{Fun}\:\mathrm{integral}\:\mathrm{problem}! \\ $$$$\int\:\:{x}^{\mathrm{d}{x}} −\mathrm{1}\:=??\: \\ $$$$\left.\mathrm{note}\right)\:\:\mathrm{I}\:\mathrm{already}\:\mathrm{know}\:\mathrm{that}\:\mathrm{integral}\:\mathrm{Solution} \\ $$$$\:\mathrm{Try}\:\mathrm{integral}\:\mathrm{problem}! \\ $$$$\left(#\:\mathrm{Product}\:\mathrm{Integral}\:,\:#\mathrm{Integral}\right) \\ $$ Terms of Service Privacy…
Question Number 218485 by Mamadi last updated on 11/Apr/25 $${solve}\:{the}\:{equation} \\ $$$$\left.\mathrm{1}\right)\:\:\:{X}^{\mathrm{6}} −\mathrm{1}=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\:{X}^{\mathrm{4}} +{X}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ Answered by Rasheed.Sindhi last updated on…
Question Number 218459 by SdC355 last updated on 10/Apr/25 $$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y}\right)=−\frac{\mathrm{1}}{\mathrm{2}}{y}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{2}}{x}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} \\ $$$$\overset{\rightarrow} {\bigtriangledown}×\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y}\right)=\begin{vmatrix}{\:\:\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} }&{\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} }&{\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} }\\{\:\:\:\:\:\partial_{{x}} }&{\:\partial_{{y}}…
Question Number 218427 by mathocean1 last updated on 09/Apr/25 $$ \\ $$$${give}\:{a}\:{recurrence}\:{relation}\:{for}\:{I}_{{n}} . \\ $$$${I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{{n}} }{dx},\:\forall{n}\:\in\:\mathbb{N}. \\ $$ Answered by mehdee7396…
Question Number 218421 by SdC355 last updated on 09/Apr/25 $$\mathrm{prove}\: \\ $$$$\int_{\:\partial\boldsymbol{\Sigma}} \:\boldsymbol{\omega}=\int_{\:\boldsymbol{\Sigma}\:} \mathrm{d}\boldsymbol{\omega} \\ $$ Commented by Ghisom last updated on 09/Apr/25 $$\mathrm{is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{newest}\:\mathrm{anti}−\mathrm{syntax}? \\…
Question Number 218400 by SdC355 last updated on 09/Apr/25 $$\mathrm{Hard}\:\mathrm{problem}….. \\ $$$$\:\mathrm{prove}. \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\alpha\in\mathbb{Z} \\ $$$$\alpha^{\mathrm{37}} \equiv\alpha\:\mathrm{Mod}\left(\mathrm{1729}\right) \\ $$$$\mathrm{pls}\:\mathrm{help}\::\left(\right. \\ $$ Answered by Nicholas666 last…
Question Number 218349 by Hanuda354 last updated on 07/Apr/25 Answered by vnm last updated on 07/Apr/25 $$ \\ $$$$\varphi\left(\theta\right)=\theta−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{sin}\:\theta}{\mathrm{5}} \\ $$$${s}\left(\alpha\right)=\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{5}\alpha−\mathrm{sin}\alpha\right) \\ $$$${S}={s}\left(\varphi\left(\frac{\pi}{\mathrm{3}}\right)\right)−{s}\left(\varphi\left(\frac{\pi}{\mathrm{2}}\right)\right)+\frac{\mathrm{19}\pi}{\mathrm{2}}= \\…
Question Number 218331 by Hanuda354 last updated on 07/Apr/25 $$\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{\mathrm{2}} \:\mathrm{sin}\:\left({x}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:=\:? \\ $$ Answered by MrGaster last updated on 07/Apr/25 Commented by…
Question Number 218317 by Hanuda354 last updated on 06/Apr/25 Answered by mr W last updated on 06/Apr/25 $${say}\:{a}={side}\:{length}\:{of}\:{square} \\ $$$${AE}=\sqrt{{a}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} } \\ $$$${FB}={a}−\mathrm{2} \\…
Question Number 218265 by SdC355 last updated on 04/Apr/25 $$\mathrm{can}\:\mathrm{interpret}\:\mathrm{the}\:\mathrm{metric}\:\mathrm{Tensor}\:\boldsymbol{\mathrm{g}}_{\mu\nu} \:\mathrm{is}\: \\ $$$$\mathrm{kinda}\:\mathrm{distance}\:\mathrm{function}\:\mathrm{at}\:\mathrm{curved}\:\mathrm{Surface}\:?? \\ $$$$\mathrm{ex}.\:\mathrm{Euclidean}\:\mathrm{space}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{Sphere}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\:\mathrm{1}}&{\:\:\:\:\mathrm{0}}&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:{r}^{\mathrm{2}} }&{\:\:\:\:\:\:\:\mathrm{0}}\\{\:\mathrm{0}}&{\:\:\:\:\:\mathrm{0}}&{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \left(\theta\right)}\end{pmatrix} \\ $$ Answered…