Question Number 218278 by youchaou last updated on 04/Apr/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 218199 by Mamadi last updated on 01/Apr/25 $${describes}\:{the}\:{rupture}\:{body}\:{onQ} \\ $$$${of}\:{polynomials}. \\ $$$$\left.{a}\left.\right)\:{X}^{\mathrm{5}} +\mathrm{1}\:\:\:\:\:\:\:\:\:{b}\right)\:{X}^{\mathrm{6}} −{X}^{\mathrm{3}} +\mathrm{1} \\ $$ Answered by MrGaster last updated on…
Question Number 218162 by Ismoiljon_008 last updated on 31/Mar/25 $$\:\:\: \\ $$$$\:\:\:{Each}\:{edge}\:{of}\:{a}\:{parallelepiped}\:{is}\:\mathrm{1}\:{cm}\:{long}. \\ $$$$\:\:\:{At}\:{one}\:{of}\:{its}\:{vertices},\:{all}\:{three}\:{face}\:{angles} \\ $$$$\:\:\:{are}\:{acute},\:{and}\:{each}\:{measures}\:\mathrm{2}\alpha. \\ $$$$\:\:\:{Find}\:{the}\:{volume}\:{of}\:{the}\:{parallepiped}. \\ $$$$\:\:\:{Help}\:{me},\:\:{please} \\ $$ Answered by mr…
Question Number 218115 by Hanuda354 last updated on 29/Mar/25 Answered by mr W last updated on 30/Mar/25 Commented by mr W last updated on 30/Mar/25…
Question Number 218063 by alephnull last updated on 27/Mar/25 $$\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\mathrm{cos}\:{x}^{\mathrm{2}} \\ $$ Answered by Frix last updated on 28/Mar/25 $$\mathrm{The}\:\mathrm{Fresnel}\:\mathrm{C}\:\mathrm{Integral}: \\ $$$$\mathrm{C}\:\left({x}\right)\::=\:\underset{\mathrm{0}} {\overset{{x}}…
Question Number 218041 by Mamadi last updated on 26/Mar/25 $${find}\:\left({x},{y},{z}\right)/{such}\:{as} \\ $$$$\left({x}+{y}+{z}=\mathrm{1}\right. \\ $$$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\mathrm{9}\right. \\ $$$$\left(\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{1}\right. \\ $$ Answered by vnm last…
Question Number 218043 by SdC355 last updated on 27/Mar/25 $$\int\:\:{e}^{−{st}} {J}_{\nu} \left({t}\right){dt}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}.\:\:\nu\in\mathbb{R}^{+} \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{s}}\int\:\:{e}^{−{st}} {J}_{\nu} \left({t}\right){dt}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} \left({s}+\nu\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)}{\:\sqrt{\left({s}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }} \\…
Question Number 217992 by yassin last updated on 25/Mar/25 Answered by Uttambiswas last updated on 25/Mar/25 Commented by Marzuk last updated on 25/Mar/25 $${these}?\:{Baby}'{s}\:{question}.{And}\:{why}\:{you}\:{have} \\…
Question Number 218005 by jacklau last updated on 25/Mar/25 $$\: \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{z}}^{\mathrm{2}} =\mathrm{1},\: \\ $$$$\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{x}}\mathrm{y}+\mathrm{2yz}\:=\:… \\ $$ Commented by Ghisom last…
Question Number 217982 by Unhombre last updated on 24/Mar/25 $${Solve} \\ $$$${If}\:\mathrm{4}^{\mathrm{2}^{\mathrm{2}{y}−\mathrm{1}\:} } =\:\mathrm{16}^{\mathrm{4}^{{y}+\mathrm{1}} } \:{and}\:\mathrm{8}^{\mathrm{3}^{\mathrm{2}{x}−\mathrm{1}} } =\:\mathrm{2}^{\mathrm{9}^{\mathrm{2}−{x}} } \\ $$$${what}\:{is}\:\mathrm{2}{x}\:+\:{y}? \\ $$ Commented by…