Question Number 182390 by nadovic last updated on 08/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 116853 by mohammad17 last updated on 07/Oct/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 116847 by mohammad17 last updated on 07/Oct/20 Commented by mohammad17 last updated on 07/Oct/20 $${help}\:{me}\:{sir} \\ $$ Answered by TANMAY PANACEA last updated…
Question Number 116845 by mohammad17 last updated on 07/Oct/20 Commented by mohammad17 last updated on 07/Oct/20 $${help}\:{me}\:{sir}\: \\ $$ Answered by TANMAY PANACEA last updated…
Question Number 116843 by mohammad17 last updated on 07/Oct/20 Commented by mohammad17 last updated on 07/Oct/20 $${help}\:{me}\:{sir} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 116841 by mohammad17 last updated on 07/Oct/20 Commented by mohammad17 last updated on 07/Oct/20 $${help}\:{me}\:{sir} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 182369 by mathocean1 last updated on 08/Dec/22 $${Find}\:{radius}\:{and}\:{center}\:{of}\:\left({S}\right): \\ $$$$\left({S}\right):\begin{cases}{{x}+{y}+{z}=\mathrm{4}}\\{{y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\mathrm{4}\left({y}+{z}\right)}\end{cases} \\ $$ Commented by a.lgnaoui last updated on 09/Dec/22 $$\mathrm{y}+\mathrm{z}=\mathrm{4}−\mathrm{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\…
Question Number 182370 by sciencestudent last updated on 08/Dec/22 $${How}\:{to}\:{find}\:{kenetic}\:{energy}\:{of}\:{one}\:{mol}\:{Helium}\:{gas}? \\ $$ Commented by mathocean1 last updated on 08/Dec/22 $${Do}\:{you}\:{mean}\:{kinetic}\:{energy}? \\ $$$${If}\:{yes},\:{it}'{s}\:{lied}\:{to}\:{motion}\:…{So}\: \\ $$$${what}\:{about}\:{the}\:{motion}\:{of}\:{your}\:{Helium}? \\…
Question Number 116820 by joki last updated on 08/Oct/20 $${prove}\:{that}\:{lim}\:{f}\left({x}\right)={L}\:{and}\:{lim}\:{f}\left({x}\right)={M}, \\ $$$${then}\:{L}={M} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 116819 by joki last updated on 07/Oct/20 $${prove}\:{the}\:{limit} \\ $$$${li}\underset{{x}−\rangle\mathrm{2}} {{m}}\sqrt{\mathrm{2}{x}}=\mathrm{2} \\ $$ Answered by 1549442205PVT last updated on 07/Oct/20 $$\mathrm{Suppose}\:\mathrm{0}<\epsilon<\mathrm{2}\:\mathrm{be}\:\mathrm{arbitrary}\:\mathrm{small}\:\mathrm{numer} \\ $$$$\mathrm{so}\:\mathrm{that}\mid\sqrt{\mathrm{2x}}−\mathrm{2}\mid<\epsilon\Leftrightarrow−\epsilon+\mathrm{2}<\sqrt{\mathrm{2x}}<\epsilon+\mathrm{2}…