Question Number 216737 by ahmed2025 last updated on 17/Feb/25 $$\:{find}\:{critical}\:{and}\:{local}\:{points}\:{for}\:{curve} \\ $$$$\:{y}={x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} +\mathrm{9}{x}−\mathrm{2} \\ $$ Commented by MathematicalUser2357 last updated on 25/Feb/25 $$\mathrm{What}\:\mathrm{is}\:\mathrm{a}\:\mathrm{critical}\:\mathrm{point}?\:\mathrm{Critical}\:\mathrm{hit}\:\mathrm{point}? \\…
Question Number 216706 by issac last updated on 16/Feb/25 $$\int\:\:\:\frac{\mathrm{d}{z}}{\mathrm{1}+\mathrm{sin}\left({z}\right)\mathrm{cos}\left({z}\right)}= \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\mathrm{d}{z}}{\mathrm{sec}^{\mathrm{2}} \left({z}\right)+\mathrm{tan}\left({z}\right)}\:\mathrm{multiply}\:\mathrm{sec}^{\mathrm{2}} \left({z}\right) \\ $$$$\mathrm{sec}^{\mathrm{2}} \left({z}\right)=\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left({z}\right) \\ $$$$\int\:\:\:\frac{\mathrm{sec}^{\mathrm{2}} \left({z}\right)\:\mathrm{d}{z}}{\mathrm{1}+\mathrm{tan}\left({z}\right)+\mathrm{tan}^{\mathrm{2}} \left({z}\right)} \\ $$$${s}=\mathrm{tan}\left({z}\right)…
Question Number 216670 by ahmed2025 last updated on 15/Feb/25 Answered by shunmisaki007 last updated on 15/Feb/25 $$\int\mathrm{cos}^{−{x}} \left(\pi\right){dx}=\int\left(−\mathrm{1}\right)^{−{x}} {dx} \\ $$$$\:\:\:=\int\left({e}^{\pi{i}} \right)^{−{x}} {dx}=\int{e}^{−\pi{ix}} {dx} \\…
Question Number 216679 by abdi last updated on 15/Feb/25 Commented by Rasheed.Sindhi last updated on 16/Feb/25 $${Not}\:{clear}\:{enough}! \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 216655 by abdelsalam last updated on 14/Feb/25 Answered by issac last updated on 14/Feb/25 $${y}^{\mathrm{4}} ={y}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${y}^{\mathrm{4}} −{y}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}=−{x}^{\mathrm{2}} \\ $$$$\left({y}^{\mathrm{2}}…
Question Number 216659 by issac last updated on 14/Feb/25 Answered by issac last updated on 14/Feb/25 $$\mathrm{Q216647} \\ $$$$\mathrm{oh}\:\mathrm{Jesus}….\mathrm{shit}…. \\ $$$$\mathrm{and}\:\mathrm{F}_{\mathrm{1}} \left({a},\mathrm{b}_{\mathrm{1}} ,\mathrm{b}_{\mathrm{2}} ,\mathrm{c},{x},{y}\right)\:\mathrm{is} \\…
Question Number 216645 by Raajaravwan last updated on 13/Feb/25 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 216596 by issac last updated on 12/Feb/25 $$\underset{\mathcal{D}} {\int\int}\:\:\:\frac{\mathrm{sin}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}{\mathrm{cos}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+\mathrm{tan}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)}\mathrm{d}{x}\mathrm{d}{y} \\ $$$$\mathcal{D}=\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right]×\left[\mathrm{0},\frac{\pi}{\mathrm{4}}\right] \\ $$ Answered by…
Question Number 216615 by EmGent last updated on 12/Feb/25 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{sin}\:{n}\pi{x}\:{J}_{\mathrm{0}} \left({j}_{\mathrm{0}{m}} {x}\right){dx} \\ $$ Answered by EmGent last updated on 12/Feb/25 $$\mathrm{Does}\:\mathrm{anyone}\:\mathrm{knows}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:? \\…
Question Number 216572 by Samuel12 last updated on 10/Feb/25 Answered by maths2 last updated on 11/Feb/25 $${si}\:\alpha\notin{I}\Rightarrow\alpha=\frac{{a}}{{b}}\in{IQ}\:\:{b} {a}=\mathrm{1}\:{on}\:{va}\:{montrer}\:{Que}\:{b}\mid{a} \\ $$$$\Rightarrow{a}^{{n}} −\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{c}_{{k}} {a}^{{k}} {b}^{{n}−{k}}…