Question Number 113668 by mohammad17 last updated on 14/Sep/20 Answered by john santu last updated on 14/Sep/20 $${If}\:\int_{−\mathrm{2}} ^{\mathrm{6}} \left({f}\left({x}\right)+\mathrm{3}\right){dx}\:=\:\mathrm{32}\:\rightarrow\int_{−\mathrm{2}} ^{\mathrm{6}} {f}\left({x}\right){dx}+\mathrm{3}\left(\mathrm{8}\right)=\mathrm{32} \\ $$$$\:\int_{−\mathrm{2}} ^{\mathrm{6}}…
Question Number 48117 by ggny last updated on 19/Nov/18 $${thanks}\:{sir} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 48111 by ggny last updated on 19/Nov/18 $$\left(−\mathrm{46}−×\right)/\left(−\mathrm{2}\right)=\mathrm{60}\:\: \\ $$$${hi}\:{sir}\:{plx}\:{help}\:{me} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 19/Nov/18 $$\frac{−\mathrm{46}−{x}}{−\mathrm{2}}=\mathrm{60} \\ $$$$−\mathrm{46}−{x}=−\mathrm{120} \\…
Question Number 113641 by ZiYangLee last updated on 14/Sep/20 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:{M}>\mathrm{0}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integers}\:{n},\:\mathrm{we}\:\mathrm{have} \\ $$$$\sqrt{\mathrm{1}+\sqrt{\mathrm{2}+\sqrt{…+\sqrt{{n}+\mathrm{1}}}}}\leqslant{M} \\ $$ Commented by mr W last updated on 14/Sep/20 $${A}_{{n}}…
Question Number 179156 by Gamil last updated on 25/Oct/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 113614 by A8;15: last updated on 14/Sep/20 Commented by mr W last updated on 14/Sep/20 $$\Rightarrow\:{Q}\mathrm{113465} \\ $$ Commented by A8;15: last updated…
Question Number 113604 by mohammad17 last updated on 14/Sep/20 $${if}\:{A}=\left\{\mathrm{1},\mathrm{2}\right\}\:{and}\:{let}\:{R}=\left\{\left({a},{b}\right)\in{A}×{A}:{a}=\mathrm{3}{b}\right\}\: \\ $$$${then}\:{R}=\:? \\ $$$$ \\ $$$${help}\:{me}\:{sir} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 179137 by yaslm last updated on 25/Oct/22 Answered by MJS_new last updated on 26/Oct/22 $$\int\frac{\mathrm{sin}\:\mathrm{3}{x}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=−\int\frac{{t}\left({t}^{\mathrm{2}} −\mathrm{3}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \sqrt{{t}^{\mathrm{2}}…
Question Number 113589 by mathdave last updated on 14/Sep/20 $${prove}\:{the}\:{following}\:{integral} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{x}^{\mathrm{2}} }{\mathrm{sin}{x}}{dx}=\mathrm{2}\pi{G}−\frac{\mathrm{7}}{\mathrm{2}}\zeta\left(\mathrm{3}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left[\frac{{x}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right]^{\mathrm{2}} \frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }{dx}=\frac{.\pi^{\mathrm{2}} }{\mathrm{2}} \\…
Question Number 113587 by mohammad17 last updated on 14/Sep/20 Commented by mohammad17 last updated on 14/Sep/20 $${help}\:{me}\:{sir} \\ $$ Answered by 1549442205PVT last updated on…