Question Number 112203 by mathdave last updated on 06/Sep/20 $${proporsed}\:{by}\:{m}.{njuly}\:\mathrm{1970} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}\right)}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx} \\ $$$${solution} \\ $$$${let}\:{I}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}\right)}{{x}+\mathrm{1}}{dx}−\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 112193 by ARVIND990 last updated on 06/Sep/20 Commented by mathmax by abdo last updated on 06/Sep/20 $$\mathrm{translate}\:\mathrm{to}\:\mathrm{english}\:\mathrm{or}\:\mathrm{frensh}\:\mathrm{or}\:\mathrm{arabic}…. \\ $$ Terms of Service Privacy…
Question Number 46652 by gunay last updated on 29/Oct/18 $$\mathrm{2}\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}+\mathrm{5}\frac{\mathrm{1}}{\mathrm{2}}\mathrm{y}−\mathrm{2}=\mathrm{3} \\ $$$$\mathrm{could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me} \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 29/Oct/18 $$\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\right){y}+\left(\mathrm{5}+\frac{\mathrm{1}}{\mathrm{2}}\right){y}=\mathrm{5} \\ $$$${y}\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{5}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{5} \\…
Question Number 177702 by lapache last updated on 08/Oct/22 $${Solve}\:{in}\:\mathbb{C} \\ $$$$\begin{cases}{{x}+{y}={z}}\\{\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}}{{z}}}\end{cases} \\ $$ Answered by Frix last updated on 08/Oct/22 $$\left(\mathrm{1}\right)\:{x}={z}−{y} \\ $$$$\left(\mathrm{2}\right)\:{x}=\frac{{yz}}{{y}−{z}} \\…
Question Number 177686 by anne1344 last updated on 08/Oct/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 112145 by weltr last updated on 06/Sep/20 $$\mathrm{4}^{\mathrm{tan}\:^{\mathrm{2}} {x}} \:+\:\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} {x}}} \:−\:\mathrm{80}\:=\:\mathrm{0} \\ $$ Answered by bemath last updated on 06/Sep/20 $$\mathrm{4}^{\mathrm{tan}\:^{\mathrm{2}} {x}}…
Question Number 177673 by DAVONG last updated on 08/Oct/22 $$\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{a}^{\mathrm{x}} −\mathrm{xlna}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{Help}\:\:\mathrm{please}\:\mathrm{Teacher} \\ $$ Commented by mr W last updated on 08/Oct/22…
Question Number 112135 by mathdave last updated on 06/Sep/20 $${solve} \\ $$$$\int_{−\mathrm{1}} ^{\mathrm{1}} \mid\mathrm{3}^{{x}} −\mathrm{2}^{{x}} \mid{dx} \\ $$ Answered by MJS_new last updated on 06/Sep/20…
Question Number 177665 by Ahmed777hamouda last updated on 07/Oct/22 Answered by Ar Brandon last updated on 07/Oct/22 $$\int_{−\infty} ^{\infty} \mathrm{sin}{x}^{\mathrm{2}} {dx}=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{sin}{t}}{\:\sqrt{{t}}}{dt}=\frac{\pi}{\mathrm{2}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\right)}=\sqrt{\frac{\pi}{\mathrm{2}}} \\ $$…
Question Number 112133 by shwebotetun last updated on 06/Sep/20 Answered by som(math1967) last updated on 06/Sep/20 $$\left(−\mathrm{2b}\right)^{\mathrm{2}} +\mathrm{20b}+\mathrm{14}=\left(−\mathrm{2c}\right)^{\mathrm{2}} +\mathrm{20c}+\mathrm{14} \\ $$$$\mathrm{4b}^{\mathrm{2}} −\mathrm{4c}^{\mathrm{2}} +\mathrm{20}\left(\mathrm{b}−\mathrm{c}\right)=\mathrm{0} \\ $$$$\mathrm{4}\left\{\left(\mathrm{b}−\mathrm{c}\right)\left(\mathrm{b}+\mathrm{c}\right)+\mathrm{5}\left(\mathrm{b}−\mathrm{c}\right)\right\}=\mathrm{0}…