Menu Close

Category: None

Question-46208

Question Number 46208 by hassentimol last updated on 22/Oct/18 Commented by hassentimol last updated on 22/Oct/18 $$ \\ $$$$\mathrm{Could}\:\mathrm{you}\:\mathrm{please}\:\mathrm{explain}\:\mathrm{me}\:\mathrm{these} \\ $$$$\mathrm{three}\:\mathrm{formulas}\:\mathrm{but}\:\mathrm{mainly}\:\mathrm{the}\:\mathrm{last} \\ $$$$\mathrm{one}\:\mathrm{as}\:\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{understand}\:\mathrm{it}\:\mathrm{at}\:\mathrm{all}. \\ $$$$…

There-are-three-classes-of-form-four-which-are-4a-4b-and-4c-in-mathematics-result-the-arithmetic-mean-of-4a-4b-and-4c-are-70-60-and-80-and-their-standard-deviation-are-3-3-4-and-2-5-Find-the-arit

Question Number 46191 by mondodotto@gmail.com last updated on 22/Oct/18 $$\mathrm{There}\:\mathrm{are}\:\mathrm{three}\:\mathrm{classes}\:\mathrm{of}\:\mathrm{form}\:\mathrm{four} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{4a},\:\mathrm{4b}\:\mathrm{and}\:\mathrm{4c}. \\ $$$$\mathrm{in}\:\mathrm{mathematics}\:\mathrm{result}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{of} \\ $$$$\mathrm{4a}\:\mathrm{4b}\:\mathrm{and}\:\mathrm{4c}\:\mathrm{are}\:\mathrm{70},\:\mathrm{60}\:\mathrm{and}\:\mathrm{80}\:\mathrm{and}\:\mathrm{their} \\ $$$$\mathrm{standard}\:\mathrm{deviation}\:\mathrm{are}\:\mathrm{3},\:\mathrm{3}.\mathrm{4},\:\mathrm{and}\:\mathrm{2}.\mathrm{5} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{arithmetic}\:\mathrm{mean}\:\mathrm{and}\:\mathrm{standard}\:\mathrm{deviation}\:\mathrm{when} \\ $$$$\mathrm{we}\:\mathrm{combine}\:\mathrm{the}\:\mathrm{results}\:\mathrm{of}\:\mathrm{mathematics}\:\mathrm{for}\: \\ $$$$\mathrm{all}\:\mathrm{classes}\:\mathrm{of}\:\mathrm{form}\:\mathrm{four}.\:\mathrm{Assuming}\:\mathrm{the} \\…

Question-46121

Question Number 46121 by Sanjarbek last updated on 21/Oct/18 Commented by tanmay.chaudhury50@gmail.com last updated on 21/Oct/18 $${as}\:{x}\rightarrow\infty\:\:\:{so}\:\mathrm{2}^{{x}} \rightarrow\infty \\ $$$${hence}\:\mathrm{3}^{\mathrm{2}^{{x}} } \rightarrow\infty \\ $$$${so}\:{finally} \\…

show-that-the-close-form-of-k-0-i-0-1-k-i-k-1-k-2i-2-1-8-ln2-

Question Number 111622 by mathdave last updated on 04/Sep/20 $${show}\:{that}\:{the}\:{close}\:{form}\:{of}\: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\left(−\mathrm{1}\right)^{{k}+{i}} }{\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}{i}+\mathrm{2}\right)}\right]\right)=\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln2} \\ $$ Answered by mathdave last updated on…