Question Number 111447 by mohammad17 last updated on 03/Sep/20 Commented by mohammad17 last updated on 03/Sep/20 $${hep}\:{me}\:{sir} \\ $$ Answered by Aziztisffola last updated on…
Question Number 45907 by gunay last updated on 18/Oct/18 $$\mathrm{7}×\left(\mathrm{6}+\mathrm{x}\right)−\mathrm{10}=\mathrm{60}\:\:\:\:\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$ Commented by peter frank last updated on 18/Oct/18 $$\mathrm{42}+\mathrm{7x}−\mathrm{10}=\mathrm{60} \\ $$$$\mathrm{7x}=\mathrm{30} \\ $$$$\mathrm{x}=\frac{\mathrm{30}}{\mathrm{7}\:\:}…
Question Number 111441 by PNL last updated on 03/Sep/20 $${solve} \\ $$$$ \\ $$$$\begin{cases}{{y}''\:−\mathrm{2}{y}'+\mathrm{2}{y}={sinht}}\\{{y}'\left(\mathrm{0}\right)=\mathrm{1}\:,\:{y}\left(\mathrm{0}\right)=\mathrm{1}}\end{cases} \\ $$ Answered by Aziztisffola last updated on 03/Sep/20 Terms of…
Question Number 45901 by mondodotto@gmail.com last updated on 18/Oct/18 Commented by Kunal12588 last updated on 19/Oct/18 $${how}\:{is}\:{this}\:{possible}? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 45896 by Sanjarbek last updated on 18/Oct/18 $$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$$$\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18 Commented by tanmay.chaudhury50@gmail.com…
Question Number 176963 by Ml last updated on 28/Sep/22 Commented by Frix last updated on 29/Sep/22 $$\Omega=\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\epsilon^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{\left(\mathrm{1}−\epsilon\mathrm{cos}\:\theta\right)^{\mathrm{2}} }{d}\theta=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi} {\int}}\frac{\epsilon^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}}…
Question Number 176962 by HeferH last updated on 28/Sep/22 $$\:{Recommended}\:{books}\:{for}\:{trigonometry}\:{from} \\ $$$$\:{zero}?\:{I}\:{know}\:{most}\:{Euclidean}\:{geometry}, \\ $$$$\:\:{and}\:{basic}\:{algebra}.\:{I}\:{feel}\:{a}\:{bit}\:{lost} \\ $$$$\: \\ $$ Commented by TheHoneyCat last updated on 30/Sep/22…
Question Number 45879 by Sanjarbek last updated on 17/Oct/18 $$\mathrm{2}^{\boldsymbol{{x}}} =\boldsymbol{{log}}_{\mathrm{0}.\mathrm{5}} \boldsymbol{{x}} \\ $$$$\boldsymbol{{find}}\:\:\boldsymbol{{x}}−? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 111397 by Khalmohmmad last updated on 03/Sep/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{cosx}}{\mathrm{x}}=? \\ $$ Commented by kaivan.ahmadi last updated on 03/Sep/20 $${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\frac{{cosx}}{{x}}=\frac{\mathrm{1}}{\mathrm{0}^{+} }=+\infty \\…
Question Number 176915 by thean last updated on 28/Sep/22 Answered by cortano1 last updated on 28/Sep/22 $$\:−\mathrm{1}\leqslant\:\mathrm{sin}\:\mathrm{x}\leqslant\mathrm{1} \\ $$$$\:−\mathrm{1}\:\leqslant\:\mathrm{sin}\:\mathrm{x}\:\leqslant\mathrm{1} \\ $$$$\:−\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\leqslant\:\frac{\left(\mathrm{x}+\mathrm{1}\right)\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\:\leqslant\frac{\mathrm{x}+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} +\mathrm{1}} \\…