Menu Close

Category: None

Version-2-202-adds-calculator-place-cursor-on-a-line-which-you-want-to-evalute-Select-calculate-from-menu-in-3-vertical-dots-at-top-Calculator-accepts-complex-numbers-and-will-return-result-in-com

Question Number 111154 by Tinku Tara last updated on 02/Sep/20 $$\mathrm{Version}\:\mathrm{2}.\mathrm{202}\:\mathrm{adds}\:\mathrm{calculator}. \\ $$$$\mathrm{place}\:\mathrm{cursor}\:\mathrm{on}\:\mathrm{a}\:\mathrm{line}\:\mathrm{which}\:\mathrm{you} \\ $$$$\mathrm{want}\:\mathrm{to}\:\mathrm{evalute}.\: \\ $$$$\mathrm{Select}\:\mathrm{calculate}\:\mathrm{from}\:\mathrm{menu}\:\mathrm{in}\:\mathrm{3}\:\mathrm{vertical} \\ $$$$\mathrm{dots}\:\mathrm{at}\:\mathrm{top}. \\ $$$$\mathrm{Calculator}\:\mathrm{accepts}\:\mathrm{complex}\:\mathrm{numbers} \\ $$$$\mathrm{and}\:\mathrm{will}\:\mathrm{return}\:\mathrm{result}\:\mathrm{in}\:\mathrm{complex} \\ $$$$\mathrm{when}\:\mathrm{needed}.…

Definite-integral-MATHEMATICS-Full-Marks-40-

Question Number 111140 by tkb last updated on 02/Sep/20 $$\: \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{D}}\mathrm{efinite}\:\boldsymbol{\mathrm{integral}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{MATHEMATICS}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Full}}\:\:\boldsymbol{\mathrm{Marks}}\::\:\mathrm{40} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

f-x-y-e-1-r-2-1-if-r-lt-1-where-r-x-y-0-if-r-1-show-that-f-x-y-is-continuous-in-R-2-

Question Number 176652 by floor(10²Eta[1]) last updated on 24/Sep/22 $$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\begin{cases}{\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{r}^{\mathrm{2}} −\mathrm{1}}} \:\mathrm{if}\:\mathrm{r}<\mathrm{1},\:\mathrm{where}\:\mathrm{r}=\parallel\left(\mathrm{x},\mathrm{y}\right)\parallel}\\{\mathrm{0}\:\mathrm{if}\:\mathrm{r}\geqslant\mathrm{1}}\end{cases} \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \\ $$ Answered by floor(10²Eta[1]) last updated on 24/Sep/22 $$\mathrm{recall}\:\mathrm{that}\:\parallel\left(\mathrm{x},\mathrm{y}\right)\parallel=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}}…

Question-111067

Question Number 111067 by Algoritm last updated on 01/Sep/20 Commented by Her_Majesty last updated on 01/Sep/20 $${I}\:{don}'{t}\:{think}\:{so} \\ $$$${lim}_{{k}\rightarrow\infty} \frac{\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{j}^{\mathrm{7}} }{{k}!}={lim}_{{k}\rightarrow\infty} \frac{\frac{{k}^{\mathrm{8}} }{\mathrm{8}}+\frac{{k}^{\mathrm{7}}…