Question Number 44967 by peter frank last updated on 06/Oct/18 Answered by tanmay.chaudhury50@gmail.com last updated on 07/Oct/18 $${The}\:{language}\:{of}\:{problem}\:{is}\:{not}\:{clear}… \\ $$$${pls}\:{clarify}\:{the}\:{function}\:{of}\:{pipe}\:{P}\:{and}\:{its}\:{rate} \\ $$$${pipe}\:{Q}\:{and}\:{rate}\:\:\:{and}\:{pipe}\:{R}\:{and}\:{rate}… \\ $$$${by}\:{the}\:{way}..\:\:{if}\:{two}\:{pipe}\:{is}\:{present}\:{one}\:{fill}\:{the}\:{tank} \\…
Question Number 110503 by mohammad17 last updated on 29/Aug/20 Commented by Rio Michael last updated on 29/Aug/20 $${sorry}\:{sir}.\:{your}\:{answer}\:{wrong}.\:{check}\:{againt} \\ $$$$\mathrm{thank}\:\mathrm{you}. \\ $$$$\mathrm{thats}\:\mathrm{great}. \\ $$ Commented…
Question Number 110480 by mohammad17 last updated on 29/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 110460 by ZiYangLee last updated on 29/Aug/20 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{continuous}\:\mathrm{real}\:\mathrm{function}\:{f}\: \\ $$$$\mathrm{such}\:\mathrm{that}\: \\ $$$${f}\left(\mathrm{ln}\left({x}+{y}\right)\right)={f}\left(\mathrm{sin}\left({xy}\right)\right)+{f}\left(\mathrm{cos}\left({y}/{x}\right)\right) \\ $$$$\mathrm{for}\:\mathrm{all}\:{x},{y}\in\mathbb{R}^{+} . \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 175987 by stelor last updated on 10/Sep/22 $${please}\:{calculate} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\left({tanx}\right)^{\sqrt{\mathrm{2}}} } \\ $$$${J}=\int_{\mathrm{0}} ^{\pi} \frac{{dx}}{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}+{sin}^{\mathrm{2}} {x}} \\ $$$${K}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…
Question Number 44901 by peter frank last updated on 06/Oct/18 Commented by peter frank last updated on 06/Oct/18 $$\mathrm{tanmay}\:\mathrm{sir},\mathrm{waiting}\:\mathrm{for}\:\mathrm{your}\:\mathrm{solution} \\ $$ Terms of Service Privacy…
Question Number 44900 by peter frank last updated on 06/Oct/18 Answered by MJS last updated on 06/Oct/18 $$\mathrm{1}\:\mathrm{large}\:\mathrm{pump}\:\mathrm{needs}\:{x}\:\mathrm{hours}\:\mathrm{to}\:\mathrm{fill}\:\mathrm{1}\:\mathrm{pool} \\ $$$$\mathrm{this}\:\mathrm{means}\:\mathrm{it}\:\mathrm{fills}\:\frac{\mathrm{1}}{{x}}\:\mathrm{pool}\:\mathrm{per}\:\mathrm{hour} \\ $$$$\mathrm{similar}\:\mathrm{1}\:\mathrm{small}\:\mathrm{pump}\:\mathrm{fills}\:\frac{\mathrm{1}}{{y}}\:\mathrm{pool}\:\mathrm{per}\:\mathrm{hour} \\ $$$$\mathrm{2}\:\mathrm{large}\:\mathrm{pumps}\:+\:\mathrm{1}\:\mathrm{small}\:\mathrm{pump}\:\mathrm{need}\:\mathrm{4}\:\mathrm{hours} \\…
Question Number 110410 by mathdave last updated on 28/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 110403 by mohammad17 last updated on 28/Aug/20 $${if}\:{W}\:{represents}\:{the}\:{Runesky}\:{determinant}\:{of}\:{the}\:{two} \\ $$$${independent}\:{solutions}\:{linearly}\:\left({y}_{\mathrm{1}} ,{y}_{\mathrm{2}} \right){of}\:{the}\:{equation}\:{y}^{''} +{p}\left({x}\right){y}^{'} +{Q}\left({x}\right)=\mathrm{0}\:{then}\:{demonstrate}\:{that}\:{W}\:{satisfies}\:{the}\:{differential}\:{equation}\:\left({W}^{\:'} +{p}\left({x}\right){W}=\mathrm{0}\right)\:{and}\:{solve}\:{this}\:{equation}\:{to}\:{qet}\:{W}\:? \\ $$$$ \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$ Commented by…
Question Number 110395 by mathdave last updated on 28/Aug/20 $${prove}\:{to}\:{ealier}\:{problem}\:{of}\: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{x}}\right)\mathrm{tanh}^{−\mathrm{1}} \left(\sqrt[{\mathrm{4}}]{{y}}\right)}{{x}\sqrt{{y}}}{dxdy}=\pi^{\mathrm{2}} \\ $$$${solution}\: \\ $$$${let} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}}…