Menu Close

Category: None

0-pi-2-e-ipix-dx-

Question Number 225652 by fantastic last updated on 05/Nov/25 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {e}^{{i}\pi{x}} \:{dx} \\ $$ Answered by mahdipoor last updated on 05/Nov/25 $$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ae}^{\mathrm{i}\pi\mathrm{x}} \right)=\left(\mathrm{i}\pi\mathrm{a}\right)\mathrm{e}^{\mathrm{i}\pi\mathrm{x}} =\mathrm{e}^{\mathrm{i}\pi\mathrm{x}}…

quick-short-Q-2-things-are-mixed-1-both-same-volume-2-both-same-mass-density-d-v-and-d-m-d-v-d-m-lt-or-gt-

Question Number 225625 by fantastic last updated on 04/Nov/25 $${quick}\:{short}\:{Q} \\ $$$$\mathrm{2}\:{things}\:{are}\:{mixed}\: \\ $$$$\left.\mathrm{1}\right){both}\:{same}\:{volume} \\ $$$$\left.\mathrm{2}\right){both}\:{same}\:{mass} \\ $$$${density}\Rightarrow{d}_{{v}} \:{and}\:{d}_{{m}} \\ $$$${d}_{{v}} \:?\:{d}_{{m}} \left[=,<\:{or}>\right] \\ $$…

prove-Gauss-curvature-K-is-intrinsic-by-showing-K-determinant-1-2-E-vv-F-uv-G-uu-1-2-E-u-F-u-1-2-E-v-F-v-1-2-G-u-E-F-1-2-

Question Number 225610 by Lara2440 last updated on 06/Nov/25 $$\mathrm{prove} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{is}\:\mathrm{intrinsic}\:\mathrm{by}\:\mathrm{showing} \\ $$$${K}=\frac{\begin{vmatrix}{−\frac{\mathrm{1}}{\mathrm{2}}{E}_{{vv}} +{F}_{{uv}} −{G}_{{uu}} }&{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{u}} }&{{F}_{{u}} −\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}} }\\{\:\:\:\:\:\:\:\:\:\:\:\:{F}_{{v}} −\frac{\mathrm{1}}{\mathrm{2}}{G}_{{u}} }&{\:\:\:{E}}&{\:\:\:\:\:\:{F}}\\{\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}{G}_{{v}} }&{\:\:\:{F}}&{\:\:\:\:\:{G}}\end{vmatrix}−\begin{vmatrix}{\:\:\:\:\mathrm{0}}&{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}} }&{\frac{\mathrm{1}}{\mathrm{2}}{G}_{{u}} }\\{\frac{\mathrm{1}}{\mathrm{2}}{E}_{{v}}…

prove-Gauss-curvature-K-intrinsic-it-s-the-same-thing-as-saying-Show-that-Gauss-curvature-K-can-only-consist-of-First-Fundamental-Form-and-it-s-Derivatives-

Question Number 225581 by Lara2440 last updated on 03/Nov/25 $$\mathrm{prove} \\ $$$$\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{intrinsic} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{the}\:\mathrm{same}\:\mathrm{thing}\:\mathrm{as}\:\mathrm{saying}; \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{can}\:\mathrm{only}\:\mathrm{consist}\:\mathrm{of} \\ $$$$\mathrm{First}\:\mathrm{Fundamental}\:\mathrm{Form}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{Derivatives}. \\ $$ Terms of Service Privacy Policy…

Diffenrantial-Geometry-Christoffel-symbol-first-kind-and-second-kind-and-Chritoffel-symbol-satisfy-1-2-g-l-l-ijk-i-j-k-

Question Number 225488 by Lara2440 last updated on 30/Oct/25 $$\mathrm{Diffenrantial}\:\mathrm{Geometry}…..=\wedge= \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\: \\ $$$$\Gamma_{\sigma\mu\nu} \:\mathrm{first}\:\mathrm{kind}\:\mathrm{and}\:\Gamma_{\mu\nu} ^{\:\sigma} \:\mathrm{second}\:\mathrm{kind}… \\ $$$$\mathrm{and}\:\mathrm{Chritoffel}\:\mathrm{symbol}\:\mathrm{satisfy} \\ $$$$\Gamma_{\mu\nu} ^{\:\sigma} =\frac{\mathrm{1}}{\mathrm{2}}{g}^{\sigma{l}} \Gamma_{{l}\mu\nu} \\…

Let-S-R-2-R-3-Sphere-Q1-Find-metric-tensor-g-Q2-Find-Riemann-metric-tensor-R-jkl-i-Q-3-Find-Ricci-tensor-R-Q-4-Find-Ricci-Scalar-R-Christoffel-symbol-first-kind-1-2-

Question Number 225479 by Lara2440 last updated on 28/Oct/25 $$\mathrm{Let}\:\mathcal{S};\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \:\mathrm{Sphere}\: \\ $$$${Q}\mathrm{1}.\:\mathrm{Find}\:\mathrm{metric}\:\mathrm{tensor}\:\mathrm{g}_{\mu\nu} \: \\ $$$${Q}\mathrm{2}.\:\mathrm{Find}\:\mathrm{Riemann}\:\mathrm{metric}\:\mathrm{tensor}\:{R}_{{jkl}} ^{{i}} \\ $$$${Q}.\mathrm{3}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{tensor}\:\mathrm{R}_{\alpha\beta} \\ $$$${Q}.\mathrm{4}\:\:\mathrm{Find}\:\mathrm{Ricci}\:\mathrm{Scalar}\:\mathcal{R} \\ $$$$\mathrm{Christoffel}\:\mathrm{symbol}\:\mathrm{first}\:\mathrm{kind}\: \\…

Which-one-is-the-oddest-prime-number-

Question Number 225461 by Jyrgen last updated on 26/Oct/25 $${Which}\:{one}\:{is}\:{the}\:{oddest}\:{prime}\:{number}? \\ $$ Answered by Frix last updated on 26/Oct/25 $$\mathrm{Obviously}\:\mathrm{2} \\ $$$$\left[\mathrm{All}\:\mathrm{other}\:\mathrm{primes}\:\mathrm{are}\:\mathrm{odd}\:\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{odd}\:\mathrm{for}\:\mathrm{a}\right. \\ $$$$\left.\mathrm{prime}\:\mathrm{number}\:\mathrm{to}\:\mathrm{be}\:\mathrm{not}\:\mathrm{odd}.\right] \\…