Menu Close

Category: None

Solve-it-by-horner-s-method-and-get-the-quotient-2x-3-y-3xy-5x-2-y-2-12-2x-4-

Question Number 175483 by sciencestudent last updated on 31/Aug/22 $${Solve}\:{it}\:{by}\:{horner}'{s}\:{method}\:{and}\:{get} \\ $$$${the}\:{quotient}. \\ $$$$\mathrm{2}{x}^{\mathrm{3}} {y}+\mathrm{3}{xy}−\mathrm{5}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}\boldsymbol{\div}\left(\mathrm{2}{x}−\mathrm{4}\right)=? \\ $$ Answered by Ar Brandon last updated…

16-1-x-1-5-4-1-x-1-2-0-find-x-

Question Number 109913 by mohammad17 last updated on 26/Aug/20 $$\sqrt[{{x}−\mathrm{1}}]{\mathrm{16}}−\mathrm{5}\:\:\sqrt[{{x}−\mathrm{1}}]{\mathrm{4}}+\mathrm{2}=\mathrm{0}\:{find}\:{x}? \\ $$ Answered by Rasheed.Sindhi last updated on 26/Aug/20 $$\sqrt[{{x}−\mathrm{1}}]{\mathrm{16}}−\mathrm{5}\:\:\sqrt[{{x}−\mathrm{1}}]{\mathrm{4}}+\mathrm{2}=\mathrm{0}\:{find}\:{x}? \\ $$$$\mathrm{16}^{\frac{\mathrm{1}}{{x}−\mathrm{1}}} −\mathrm{5}\left(\mathrm{4}\right)^{\frac{\mathrm{1}}{{x}−\mathrm{1}}} +\mathrm{2}=\mathrm{0} \\…

Question-44373

Question Number 44373 by jasno91 last updated on 28/Sep/18 Answered by tanmay.chaudhury50@gmail.com last updated on 28/Sep/18 $${a}^{\mathrm{2}} =\mathrm{484} \\ $$$${a}=\sqrt{\mathrm{484}} \\ $$$$\:\:\:\:=\sqrt{\mathrm{4}×\mathrm{121}}\: \\ $$$$\:\:\:\:\:=\mathrm{2}×\mathrm{11} \\…

Question-44374

Question Number 44374 by jasno91 last updated on 28/Sep/18 Answered by tanmay.chaudhury50@gmail.com last updated on 28/Sep/18 $$=\frac{\mathrm{12}.\mathrm{50}}{\mathrm{100}}=\frac{\mathrm{125}}{\mathrm{1000}}=\frac{\mathrm{5}}{\mathrm{40}}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$ Terms of Service Privacy Policy Contact:…

Question-175434

Question Number 175434 by thean last updated on 30/Aug/22 Answered by Mathspace last updated on 30/Aug/22 $$={lim}_{{x}\rightarrow\mathrm{0}^{+} } \left(\frac{{x}^{\mathrm{2}} −\mathrm{2}−\mathrm{2}{xlnx}+\mathrm{3}{x}}{{x}}\right) \\ $$$$={lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{2}}{{x}}…

A-9xcos-2x-dx-

Question Number 175410 by Stephan last updated on 29/Aug/22 $$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{A}=\int\mathrm{9}{x}\mathrm{cos}\:\mathrm{2}{x}\:\:{dx} \\ $$$$ \\ $$ Answered by MikeH last updated on 29/Aug/22 $$\mathrm{let}\:\begin{cases}{{u}\:=\:{x}\Rightarrow\:{du}\:=\:{dx}}\\{{dv}\:=\:\mathrm{cos}\:\mathrm{2}{x}\:{dx}\:\Rightarrow\:{v}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{sin}\:\mathrm{2}{x}}\end{cases} \\…