Menu Close

Category: None

be-math-1-3-2cos-x-2-3cos-x-3-dx-2-2-3-y-2-3-y-14-y-

Question Number 109854 by bemath last updated on 26/Aug/20 $$\:\frac{\bigstar{be}\bigstar}{{math}} \\ $$$$\left(\mathrm{1}\right)\int\:\frac{\mathrm{3}+\mathrm{2cos}\:{x}}{\left(\mathrm{2}+\mathrm{3cos}\:{x}\right)^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\:\right)^{{y}} −\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\:\right)^{{y}} \:=\:\mathrm{14} \\ $$$$\:\:\:\:\:{y}=? \\ $$ Commented by bemath last…

Question-109855

Question Number 109855 by aurpeyz last updated on 26/Aug/20 Answered by aurpeyz last updated on 26/Aug/20 $${Can}\:{anyone}\:{pls}\:{explain}\:{this}?\:{it}\:{is}\:{pertaining} \\ $$$${binomial}\:{expansion}\:{for}\:{negative}\:{powers} \\ $$ Commented by mathdave last…

pls-is-there-anyone-with-any-material-that-can-help-me-for-binomial-expansion-for-negative-powers-

Question Number 109852 by aurpeyz last updated on 26/Aug/20 $${pls}\:{is}\:{there}\:{anyone}\:{with}\:{any}\:{material}\:{that} \\ $$$${can}\:{help}\:{me}\:{for}\:{binomial}\:{expansion}\:{for} \\ $$$${negative}\:{powers} \\ $$ Commented by mathdave last updated on 26/Aug/20 $${drop}\:{the}\:{question}\:{nah}\:{from}\:{there}\:{when}\:{it}\:{solvr}\:{u} \\…

Question-109817

Question Number 109817 by Algoritm last updated on 25/Aug/20 Commented by 1549442205PVT last updated on 26/Aug/20 $$\mathrm{This}\:\mathrm{question}\:\mathrm{is}\:\mathrm{repeated}\:\mathrm{question} \\ $$$$\mathrm{Q109721}.\mathrm{Here},\mathrm{you}\:\mathrm{wrote}\:\:\mathrm{the}\:\mathrm{question} \\ $$$$\mathrm{in}\:\mathrm{an}\:\mathrm{ambiguous}\:\mathrm{way} \\ $$$$\mathrm{I}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\mathrm{the}\:\mathrm{case}\:\mathrm{log}_{\mathrm{3}} \left[\left(\mathrm{6}−\mathrm{x}\right)\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{6}}\right]=\mathrm{x}…

a-handy-little-formula-to-remember-in-case-you-forget-the-value-of-3-2-log-2-3-2-2-4-3-

Question Number 109806 by floor(10²Eta[1]) last updated on 25/Aug/20 $$\mathrm{a}\:\mathrm{handy}\:\mathrm{little}\:\mathrm{formula}\:\mathrm{to}\:\mathrm{remember} \\ $$$$\left.\mathrm{in}\:\mathrm{case}\:\mathrm{you}\:\mathrm{forget}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{3}\::\right) \\ $$$$ \\ $$$$\:\:\:^{\frac{\mathrm{2}}{\left(\frac{\mathrm{log}_{\mathrm{2}} \left(\mathrm{3}\right)}{\mathrm{2}}\right)}} \sqrt{\mathrm{2}^{\mathrm{4}} }=\mathrm{3} \\ $$ Terms of Service Privacy…