Question Number 173516 by SANOGO last updated on 12/Jul/22 $${calcul} \\ $$$$\int_{{o}} ^{+{oo}} \frac{{tlnt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dt} \\ $$ Answered by aleks041103 last updated on 12/Jul/22…
Question Number 173515 by Muktarr last updated on 12/Jul/22 Answered by aleks041103 last updated on 12/Jul/22 $${U}_{{rms}} =\sqrt{\frac{\mathrm{1}}{{T}}\int_{\mathrm{0}} ^{\:{T}} {U}^{\mathrm{2}} \left({t}\right){dt}} \\ $$$${U}\left({t}\right)=\begin{cases}{+\mathrm{10},\:\mathrm{0}<{t}<{T}/\mathrm{2}}\\{−\mathrm{10},\:{T}/\mathrm{2}<{t}<{T}}\end{cases} \\ $$$$\Rightarrow{U}^{\mathrm{2}}…
Question Number 173507 by JordanRoddy last updated on 12/Jul/22 $$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${solve}\:\:\:{y}−\left({x}+\mathrm{1}\right)\:{y}'\:+\:\frac{\mathrm{2}{x}\left(\mathrm{2}{x}−\mathrm{1}\right)}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{0} \\ $$$$\mathrm{and}\:\:\:\:\:\:{x}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:{y}'\:+\left(\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\right)\:{y}\:=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$…
Question Number 173493 by mokys last updated on 12/Jul/22 $$\boldsymbol{{find}}\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\boldsymbol{{tan}}\left(\boldsymbol{{tanhx}}\right)−\boldsymbol{{tanh}}\left(\boldsymbol{{tanx}}\right) \\ $$ Answered by aleks041103 last updated on 12/Jul/22 $${just}\:{substitute} \\ $$$${tan}\left({tanh}\left(\mathrm{0}\right)\right)={tan}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${tanh}\left({tan}\left(\mathrm{0}\right)\right)={tanh}\left(\mathrm{0}\right)=\mathrm{0}…
Question Number 173484 by mokys last updated on 12/Jul/22 $$\left.\mathrm{1}\right)\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\mathrm{0}} \:\frac{\boldsymbol{{x}}^{\boldsymbol{{sinx}}} −\left(\boldsymbol{{sinx}}\right)^{\boldsymbol{{x}}} }{\boldsymbol{{x}}^{\boldsymbol{{cosx}}} +\mathrm{1}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:\boldsymbol{{lim}}_{\boldsymbol{{x}}\rightarrow\infty} \:\left[\boldsymbol{{x}}\:\boldsymbol{{lnx}}\:−\:\mathrm{2}\boldsymbol{{x}}\:\boldsymbol{{ln}}\left(\boldsymbol{{sin}}\frac{\mathrm{1}}{\:\sqrt{\boldsymbol{{x}}}}\right)\:\right] \\ $$$$ \\ $$$$\boldsymbol{{how}}\:\boldsymbol{{can}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{proplem}}\:? \\ $$…
Question Number 107946 by ZiYangLee last updated on 13/Aug/20 $$\mathrm{Let}\:\mathrm{a}\:\mathrm{sequence}\:\left\{{a}_{\mathrm{n}} \right\}\:\mathrm{satisfies} \\ $$$${a}_{\mathrm{n}} =\begin{cases}{\mathrm{2},\:\mathrm{n}=\mathrm{1}}\\{\mathrm{2ln}\left({a}_{\mathrm{n}−\mathrm{1}} \right)+\frac{\mathrm{1}}{{a}_{\mathrm{n}−\mathrm{1}} }\:,\:\mathrm{n}\geqslant\mathrm{2}}\end{cases} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$${a}_{\mathrm{n}} \geqslant\mathrm{1}+\frac{\mathrm{1}}{\mathrm{n}}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\in\mathbb{N}. \\ $$ Terms of…
Question Number 107941 by mohammad17 last updated on 13/Aug/20 Commented by kaivan.ahmadi last updated on 13/Aug/20 $$\frac{\partial\theta}{\partial{t}}={nt}^{{n}−\mathrm{1}} {e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} +{t}^{{n}} \frac{{r}^{\mathrm{2}} }{\mathrm{2}{t}^{\mathrm{2}} }{e}^{\frac{−{r}^{\mathrm{2}} }{\mathrm{2}{t}}} =\left({nt}^{{n}−\mathrm{1}}…
Question Number 107928 by mohammad17 last updated on 13/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 107926 by mohammad17 last updated on 13/Aug/20 Answered by Aziztisffola last updated on 13/Aug/20 $$\mathrm{True} \\ $$ Answered by Aziztisffola last updated on…
Question Number 107924 by mohammad17 last updated on 13/Aug/20 Answered by Aziztisffola last updated on 13/Aug/20 $$\mathrm{True} \\ $$ Commented by mohammad17 last updated on…