Menu Close

Category: None

Given-that-log-4-y-1-log-4-x-y-m-and-log-2-y-1-log-2-x-m-1-show-that-y-2-1-8-m-

Question Number 170468 by MathsFan last updated on 24/May/22 $$\:\mathrm{G}{iven}\:{that}\:{log}_{\mathrm{4}} \left({y}−\mathrm{1}\right)+{log}_{\mathrm{4}} \left(\frac{{x}}{{y}}\right)={m} \\ $$$$\:{and}\:{log}_{\mathrm{2}} \left({y}+\mathrm{1}\right)−{log}_{\mathrm{2}} {x}={m}−\mathrm{1}, \\ $$$$\:{show}\:{that}\:{y}^{\mathrm{2}} =\mathrm{1}−\mathrm{8}^{{m}} \\ $$ Answered by cortano1 last…

Question-104905

Question Number 104905 by mohammad17 last updated on 24/Jul/20 Answered by OlafThorendsen last updated on 24/Jul/20 $${x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\frac{\mathrm{1}−{x}^{\mathrm{5}} }{\mathrm{1}−{x}}\:=\:\mathrm{0} \\ $$$${x}^{\mathrm{5}}…

A-line-is-formed-by-joining-the-points-A-7-0-and-B-0-2-Obtain-the-equation-of-the-straight-line-joining-AC-such-that-the-x-axis-bisects-the-angle-BAC-

Question Number 170435 by MathsFan last updated on 23/May/22 $$\boldsymbol{{A}}\:\boldsymbol{{line}}\:\boldsymbol{{is}}\:\boldsymbol{{formed}}\:\boldsymbol{{by}}\:\boldsymbol{{joining}}\:\boldsymbol{{the}} \\ $$$$\boldsymbol{{points}}\:\boldsymbol{{A}}\left(\mathrm{7},\mathrm{0}\right)\:\boldsymbol{{and}}\:\boldsymbol{{B}}\left(\mathrm{0},\mathrm{2}\right).\:\boldsymbol{{Obtain}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{equation}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{straight}}\:\boldsymbol{{line}} \\ $$$$\boldsymbol{{joining}}\:\boldsymbol{{AC}}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{x}}−\boldsymbol{{axis}} \\ $$$$\boldsymbol{{bisects}}\:\boldsymbol{{the}}\:\boldsymbol{{angle}}\:\boldsymbol{{BAC}}. \\ $$ Answered by MikeH last updated…

Question-170426

Question Number 170426 by daus last updated on 23/May/22 Answered by Rasheed.Sindhi last updated on 23/May/22 $$\frac{\mathrm{1}}{\mathrm{3}.\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{7}.\mathrm{9}}+… \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{3}\right)} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{3}\right)}=\frac{{A}}{\mathrm{2}{k}+\mathrm{1}}+\frac{{B}}{\mathrm{2}{k}+\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:{A}\left(\mathrm{2}{k}+\mathrm{3}\right)+{B}\left(\mathrm{2}{k}+\mathrm{1}\right)=\mathrm{1}…

A-ballot-box-contains-7-balls-3-are-black-we-draw-successively-and-reputing-inside-5-balls-What-is-the-number-of-possibilities-to-have-one-black-ball-

Question Number 104876 by mathocean1 last updated on 24/Jul/20 $${A}\:{ballot}\:{box}\:{contains}\:\mathrm{7}\:{balls}\left(\mathrm{3}\:{are}\:\right. \\ $$$$\left.{black}\right).\:{we}\:{draw}\:{successively}\:{and} \\ $$$${reputing}\left({inside}\right)\:\mathrm{5}\:{balls}. \\ $$$${What}\:{is}\:{the}\:{number}\:{of}\:{possibilities}\: \\ $$$${to}\:{have}\:{one}\:{black}\:{ball}? \\ $$ Terms of Service Privacy Policy…