Question Number 169211 by 0731619 last updated on 26/Apr/22 Commented by infinityaction last updated on 26/Apr/22 $$\mathrm{sin}\:\left(\alpha+\beta\right)\:=\:\frac{\mathrm{2}{mn}}{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} } \\ $$ Commented by 0731619 last…
Question Number 169196 by aurpeyz last updated on 25/Apr/22 Commented by aurpeyz last updated on 25/Apr/22 $${What}\:{is}\:{the}\:{coefficient}\:{of}\:{resistivity}\:{defined}\:{as}? \\ $$$${the}\:{options}\:{are}\:{above}. \\ $$$$ \\ $$ Commented by…
Question Number 103659 by abony1303 last updated on 16/Jul/20 $$\mathrm{When}\:\mathrm{y}=\mathrm{ax}+\mathrm{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{line}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{curve}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} \:\mathrm{passing}\:\mathrm{through}\:\left(\mathrm{0};\:−\mathrm{2}\right), \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{b}? \\ $$ Commented by abony1303 last updated on 16/Jul/20 $$\mathrm{pls}\:\mathrm{help}…
Question Number 169195 by OtomachiNow last updated on 25/Apr/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169164 by 0731619 last updated on 25/Apr/22 Commented by infinityaction last updated on 25/Apr/22 $${y}\:=\:\mathrm{ln}\:\left(\sqrt{\frac{\left(\mathrm{1}−\mathrm{sin}\:{x}\right)/\mathrm{cos}\:{x}}{\left(\mathrm{1}+\mathrm{sin}\:{x}\right)/\mathrm{cos}\:{x}}}\right. \\ $$$${y}\:=\:\mathrm{ln}\:\sqrt{\frac{\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)}{\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)}} \\ $$$${y}\:=\:\mathrm{ln}\:\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right) \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{sec}\:{x}\left(\mathrm{tan}\:{x}−\mathrm{sec}\:{x}\right)}{\left(\mathrm{sec}\:{x}−\mathrm{tan}\:{x}\right)} \\ $$$$\frac{{dy}}{{dx}}\:=\:−\mathrm{sec}\:{x}…
Question Number 169145 by MathsFan last updated on 24/Apr/22 $$\boldsymbol{{ABC}}\:\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{which}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{B}}\:\boldsymbol{\mathrm{meet}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AC}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{{D}}, \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{bisector}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{{BDC}}\:\boldsymbol{\mathrm{is}} \\ $$$$\:\boldsymbol{\mathrm{parallel}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{side}}\:\boldsymbol{{AB}}.\:\boldsymbol{\mathrm{Prove}}\:\boldsymbol{\mathrm{that}} \\ $$$$\:\boldsymbol{\mathrm{the}}\:\bigtriangleup\boldsymbol{{ABC}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{issoceles}}\:\boldsymbol{\mathrm{triangle}}. \\ $$$$ \\ $$ Answered by som(math1967)…
Question Number 169138 by stelor last updated on 24/Apr/22 $${Hello},\:{please}\:{help}\:{me}. \\ $$$${calculate}\:{P}=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\prod}}{cos}\left(\theta{k}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 169112 by mokys last updated on 24/Apr/22 Commented by aleks041103 last updated on 24/Apr/22 $${y}=\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} −\mathrm{4}{x}}\right)^{\mathrm{3}} \\ $$$${y}'=\mathrm{3}\left(\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{3}} −\mathrm{4}{x}}\right)^{\mathrm{2}} \frac{\mathrm{2}{x}\left({x}^{\mathrm{3}} −\mathrm{4}{x}\right)−\left(\mathrm{3}{x}^{\mathrm{2}}…
Question Number 38044 by solihin last updated on 21/Jun/18 Commented by math khazana by abdo last updated on 22/Jun/18 $${z}\overset{−} {{z}}=\mathrm{5}\:{and}\:\frac{{z}}{\overset{−} {{z}}}=−\mathrm{1}\:+\frac{\mathrm{12}}{\mathrm{5}}{i}\:\Rightarrow\mid{z}^{} \mid^{\mathrm{2}} =\mathrm{5}\:\Rightarrow\mid{z}\mid=\sqrt{\mathrm{5}} \\…
Question Number 103560 by abony1303 last updated on 15/Jul/20 $$\mathrm{S}=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{17}} {\sum}}\mathrm{k}\centerdot\mathrm{2}^{\mathrm{k}} =? \\ $$ Commented by abony1303 last updated on 15/Jul/20 $$\mathrm{pls}\:\mathrm{help} \\ $$…