Menu Close

Category: None

Question-102985

Question Number 102985 by DGmichael last updated on 12/Jul/20 Answered by mathmax by abdo last updated on 12/Jul/20 $$\mathrm{at}\:\mathrm{form}\:\mathrm{of}\:\mathrm{serie}\:\:\:\:\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\int_{\mathrm{0}} ^{\mathrm{x}} \:\frac{\mathrm{e}^{\mathrm{t}} }{\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)^{\mathrm{2}} }\mathrm{dt} \\…

x-x-dx-

Question Number 168519 by mokys last updated on 12/Apr/22 $$\int\:{x}^{{x}} \:{dx} \\ $$ Answered by Mathspace last updated on 12/Apr/22 $$\int\:{x}^{{x}} {dx}=\int\:{e}^{{xlnx}} {dx} \\ $$$$=\int\:\Sigma\:\frac{\left({xlnx}\right)^{{n}}…

Question-168493

Question Number 168493 by mokys last updated on 11/Apr/22 Answered by FelipeLz last updated on 12/Apr/22 $$\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}−\begin{pmatrix}{{n}−\mathrm{1}}\\{{r}−\mathrm{1}}\end{pmatrix}\:=\:\frac{{n}!}{{r}!\left({n}−{r}\right)!}−\frac{\left({n}−\mathrm{1}\right)!}{\left({r}−\mathrm{1}\right)!\left({n}−{r}\right)!}\:=\:\frac{{n}!−{r}\left({n}−\mathrm{1}\right)!}{{r}!\left({n}−{r}\right)!}\:=\:\frac{\left({n}−{r}\right)\left({n}−\mathrm{1}\right)!}{{r}!\left({n}−{r}\right)!}\:=\:\frac{\left({n}−\mathrm{1}\right)!}{{r}!\left({n}−{r}−\mathrm{1}\right)!}\:=\:\frac{\left({n}−\mathrm{1}\right)!}{{r}!\left(\left({n}−\mathrm{1}\right)−{r}\right)!}\:=\:\begin{pmatrix}{{n}−\mathrm{1}}\\{\:\:\:\:\:{r}}\end{pmatrix} \\ $$ Terms of Service Privacy Policy Contact:…

solve-for-Z-x-t-if-Z-n-x-2-t-subjected-Z-x-0-x-2-and-Z-1-t-cost-

Question Number 37424 by mondodotto@gmail.com last updated on 12/Jun/18 $$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{{Z}}\left(\boldsymbol{{x}},\boldsymbol{{t}}\right)\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{Z}}_{\boldsymbol{\mathrm{n}}} =\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{t}}\:\:\boldsymbol{\mathrm{subjected}}\:\boldsymbol{{Z}}\left(\boldsymbol{{x}},\mathrm{0}\right)=\boldsymbol{{x}}^{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{and}}\:\boldsymbol{{Z}}\left(\mathrm{1},\boldsymbol{{t}}\right)=\boldsymbol{\mathrm{cos}{t}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

show-that-U-x-y-F-2x-5y-G-x-5y-is-the-general-solution-4U-25U-0-

Question Number 37422 by mondodotto@gmail.com last updated on 12/Jun/18 $$\boldsymbol{\mathrm{show}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{{U}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)=\boldsymbol{{F}}\left(\mathrm{2}\boldsymbol{{x}}+\mathrm{5}\boldsymbol{{y}}\right)+\boldsymbol{{G}}\left(\boldsymbol{{x}}−\mathrm{5}\boldsymbol{{y}}\right) \\ $$$$\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{general}}\:\boldsymbol{\mathrm{solution}}\:\mathrm{4}\boldsymbol{{U}}_{\upsilon} −\mathrm{25}\boldsymbol{{U}}_{\upsilon} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com