Menu Close

Category: None

f-z-j-z-z-2-j-2-z-0-lim-z-f-z-

Question Number 213555 by issac last updated on 08/Nov/24 $${f}\left({z}\right)=\underset{{j}=−\infty} {\overset{\infty} {\sum}}\:\frac{{z}}{{z}^{\mathrm{2}} +{j}^{\mathrm{2}} }\:,\:{z}\in\left(\mathrm{0},\infty\right) \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({z}\right)=?? \\ $$ Answered by lepuissantcedricjunior last updated on…

0-2pi-z-sin-z-1-cos-2-z-dz-z-2-1-z-2-1-dz-z-2-sin-z-z-2-1-dz-

Question Number 213518 by issac last updated on 07/Nov/24 $$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{sin}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$ Answered by…

0-2pi-z-sin-z-1-cos-2-z-dz-Contour-integral-z-2-1-z-2-1-dz-z-2-sin-z-z-2-1-dz-

Question Number 213484 by issac last updated on 06/Nov/24 $$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\mathrm{d}{z}\:\:\left(\mathrm{Contour}\:\mathrm{integral}\right)\: \\ $$$$\oint_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$$$\oint_{\:\mid{z}\mid=\mathrm{2}} \:\:\frac{\mathrm{sin}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$ Terms of…

1-z-6-1-dz-

Question Number 213451 by issac last updated on 06/Nov/24 $$\int\:\:\frac{\mathrm{1}}{{z}^{\mathrm{6}} −\mathrm{1}}\:\mathrm{d}{z}=?? \\ $$ Answered by Frix last updated on 06/Nov/24 $$\int\frac{{dz}}{{z}^{\mathrm{6}} −\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{I}_{{k}} \\…

pls-teach-me-above-question-prove-real-analysis-pls-and-sorry-Mr-gaster-i-cant-believe-you-answer-

Question Number 213404 by issac last updated on 04/Nov/24 $$\mathrm{pls}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{above}\:\mathrm{question} \\ $$$$\downarrow\downarrow\:\left(\mathrm{prove}\:\mathrm{real}\:\mathrm{analysis}\:\mathrm{pls}\right) \\ $$$$\mathrm{and}\:\mathrm{sorry}\:\mathrm{Mr}\:\mathrm{gaster} \\ $$$$\mathrm{i}\:\mathrm{cant}\:\mathrm{believe}\:\mathrm{you}\:\mathrm{answer}…. \\ $$ Commented by MrGaster last updated on 04/Nov/24…

One-simple-Equation-pls-prove-this-property-j-1-N-a-j-k-1-M-b-k-j-1-N-k-1-M-a-j-b-k-and-j-0-N-f-a-b-a-N-j-b-a-N-k-0-M-g-a-b-a-M-k-b-a-M-j-

Question Number 213398 by issac last updated on 04/Nov/24 $$\mathrm{One}\:\mathrm{simple}\:\mathrm{Equation} \\ $$$$\mathrm{pls}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{property} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\:{a}_{{j}} \centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}{b}_{{k}} =\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}\:{a}_{{j}} {b}_{{k}}…