Question Number 213564 by tri26112004 last updated on 09/Nov/24 $${f}:\:{Z}\rightarrow{R}\:{such}\:{that} \\ $$$${f}\left({x}\right).{f}\left({y}\right)={f}\left({x}+{y}\right)+{f}\left({x}−{y}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=¿ \\ $$ Commented by mr W last updated on 09/Nov/24 $${f}\left({x}\right)=\mathrm{2}\:\mathrm{cos}\:{x}…
Question Number 213555 by issac last updated on 08/Nov/24 $${f}\left({z}\right)=\underset{{j}=−\infty} {\overset{\infty} {\sum}}\:\frac{{z}}{{z}^{\mathrm{2}} +{j}^{\mathrm{2}} }\:,\:{z}\in\left(\mathrm{0},\infty\right) \\ $$$$\underset{{z}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({z}\right)=?? \\ $$ Answered by lepuissantcedricjunior last updated on…
Question Number 213518 by issac last updated on 07/Nov/24 $$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$$$\int_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{sin}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$ Answered by…
Question Number 213499 by issac last updated on 06/Nov/24 $$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\mathrm{d}{z}\:=?\:\left(\mathrm{contour}\:\mathrm{integral}\right) \\ $$$$\mathrm{pls}\:\mathrm{help}….. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 213484 by issac last updated on 06/Nov/24 $$\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \:\frac{{z}\centerdot\mathrm{sin}\left({z}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left({z}\right)}\mathrm{d}{z}\:\:\left(\mathrm{Contour}\:\mathrm{integral}\right)\: \\ $$$$\oint_{\:\mid{z}\mid=\mathrm{2}} \:\frac{\mathrm{1}}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$$$\oint_{\:\mid{z}\mid=\mathrm{2}} \:\:\frac{\mathrm{sin}\left({z}\right)}{{z}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$ Terms of…
Question Number 213485 by tri26112004 last updated on 06/Nov/24 $${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+…+\frac{\mathrm{1}}{\mathrm{2021}^{\mathrm{2}} }<\frac{\mathrm{25}}{\mathrm{36}} \\ $$ Answered by mr W last updated on 06/Nov/24…
Question Number 213451 by issac last updated on 06/Nov/24 $$\int\:\:\frac{\mathrm{1}}{{z}^{\mathrm{6}} −\mathrm{1}}\:\mathrm{d}{z}=?? \\ $$ Answered by Frix last updated on 06/Nov/24 $$\int\frac{{dz}}{{z}^{\mathrm{6}} −\mathrm{1}}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{4}} {\sum}}{I}_{{k}} \\…
Question Number 213404 by issac last updated on 04/Nov/24 $$\mathrm{pls}\:\mathrm{teach}\:\mathrm{me}\:\mathrm{above}\:\mathrm{question} \\ $$$$\downarrow\downarrow\:\left(\mathrm{prove}\:\mathrm{real}\:\mathrm{analysis}\:\mathrm{pls}\right) \\ $$$$\mathrm{and}\:\mathrm{sorry}\:\mathrm{Mr}\:\mathrm{gaster} \\ $$$$\mathrm{i}\:\mathrm{cant}\:\mathrm{believe}\:\mathrm{you}\:\mathrm{answer}…. \\ $$ Commented by MrGaster last updated on 04/Nov/24…
Question Number 213398 by issac last updated on 04/Nov/24 $$\mathrm{One}\:\mathrm{simple}\:\mathrm{Equation} \\ $$$$\mathrm{pls}\:\mathrm{prove}\:\mathrm{this}\:\mathrm{property} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\:{a}_{{j}} \centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}{b}_{{k}} =\underset{{j}=\mathrm{1}} {\overset{{N}} {\sum}}\centerdot\underset{{k}=\mathrm{1}} {\overset{{M}} {\sum}}\:{a}_{{j}} {b}_{{k}}…
Question Number 213369 by Frix last updated on 03/Nov/24 $$\mathrm{Old}\:\mathrm{question}\:\mathrm{203835} \\ $$$$\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{6}−\sqrt{\mathrm{25}{x}^{\mathrm{4}} −\mathrm{50}{x}^{\mathrm{2}} +\mathrm{36}}}}{\:\sqrt{\mathrm{5}}}{dx}=? \\ $$ Commented by MathematicalUser2357 last updated on 06/Nov/24…