Question Number 102066 by bramlex last updated on 06/Jul/20 $$\left(\mathrm{1}\right)\int\:\frac{\mathrm{cos}\:\left(\mathrm{ax}\right)\:\mathrm{dx}}{\:\sqrt{\mathrm{sin}\:\mathrm{ax}−\mathrm{b}}} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{D}^{\mathrm{3}} +\mathrm{2D}^{\mathrm{2}} +\mathrm{D}\right)\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2x}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x} \\ $$$$\left(\mathrm{3}\right)\mathrm{the}\:\mathrm{area}\:\mathrm{between}\:\mathrm{the}\:\mathrm{curves} \\ $$$$\mathrm{y}\:=\:\frac{\mathrm{2}}{\mathrm{x}}\:\mathrm{and}\:\mathrm{y}\:=\:−\mathrm{x}+\mathrm{3}\: \\ $$ Answered by bemath…
Question Number 167588 by AlbertEinstein last updated on 20/Mar/22 $$\mathrm{1}+\mathrm{1}=¿ \\ $$ Answered by chhaythean last updated on 20/Mar/22 $$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{2}\pi} \int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \mathrm{sin}\varphi\mathrm{cos}^{\mathrm{3}} \theta\mathrm{d}\varphi\mathrm{d}\theta…
Question Number 167576 by mkam last updated on 19/Mar/22 $$\boldsymbol{{prove}}\:\boldsymbol{{by}}\:\boldsymbol{{useing}}\:\boldsymbol{{the}}\:\boldsymbol{{polar}}\:\boldsymbol{{cordinaite}}\: \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{{a}}}{\mathrm{2}}} \:\:\:\int_{\boldsymbol{{y}}} ^{\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\boldsymbol{{y}}^{\mathrm{2}} }} \:\boldsymbol{{x}}\:\boldsymbol{{dx}}\:\boldsymbol{{dy}}\:\:=\:\frac{\mathrm{5}\:\boldsymbol{{a}}^{\mathrm{3}} }{\mathrm{24}\:} \\ $$ Commented by…
Question Number 167547 by LEKOUMA last updated on 19/Mar/22 Commented by MJS_new last updated on 19/Mar/22 $$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{this}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 167536 by mkam last updated on 19/Mar/22 $${is}\:{cos}\left({t}+\frac{\pi}{\mathrm{2}}\right)\:{trigonometric}\:{function}\:? \\ $$ Commented by mkam last updated on 19/Mar/22 $$????? \\ $$ Commented by MJS_new…
Question Number 167534 by daus last updated on 19/Mar/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 167526 by Gbenga last updated on 18/Mar/22 $$\int_{\mathrm{0}} ^{\frac{\boldsymbol{\pi}}{\mathrm{2}}} \underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\mathrm{1}}{\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\mathrm{1}}\boldsymbol{\mathrm{dn}}=??? \\ $$ Commented by aleks041103 last updated on 18/Mar/22 $${how}\:{do}\:{you}\:{sum}\:{and}\:{integrate}\:{over}…
Question Number 167517 by Gbenga last updated on 18/Mar/22 $$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\frac{\boldsymbol{\mathrm{cos}}\left(\boldsymbol{\mathrm{n}}\right)\boldsymbol{\mathrm{sin}}\left(\boldsymbol{\mathrm{n}}\right)}{\boldsymbol{\mathrm{tan}}\left(\boldsymbol{\mathrm{n}}\right)} \\ $$ Answered by alephzero last updated on 18/Mar/22 $$\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\mathrm{tan}\:{n}}\:=\:\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}}{\frac{\mathrm{sin}\:{n}}{\mathrm{cos}\:{n}}}\:= \\ $$$$=\:\frac{\mathrm{cos}\:{n}\:\mathrm{sin}\:{n}\:\mathrm{cos}\:{n}}{\mathrm{sin}\:{n}}\:=\:\mathrm{cos}^{\mathrm{2}} \:{n}…
Question Number 167508 by Bagus1003 last updated on 18/Mar/22 $$\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}={x}^{\mathrm{3}} −\mathrm{1} \\ $$$${How}\:{much}\:{the}\:{x}\:{is}? \\ $$ Answered by alephzero last updated on 18/Mar/22 $$\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{2}{x}+\mathrm{1}}\:=\:{x}^{\mathrm{3}} −\mathrm{1} \\…
Question Number 167505 by Bagus1003 last updated on 18/Mar/22 $${Solve}\:{this}\:{Equation}\:: \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\left(\frac{{x}}{−{x}}\right)×\left(\left(\frac{{x}}{{x}}\right)+\left(\frac{{x}}{{x}}\right)\right)^{\left(\left(\frac{{x}}{{x}}\right)+\left(\frac{{x}}{{x}}\right)+\left(\frac{{x}}{{x}}\right)\right)} \right) \\ $$$${Then}\:{says}\:{it}\:{in}\:{English}\:{word},\: \\ $$$${but}\:{without}\:{saying}\:{the}\:{word}\: \\ $$$$''\boldsymbol{{N}}{egative}'' \\ $$$${That}\:{would}\:{be}\:{NSFW}\:{account}\:{on} \\ $$$${Twitter}. \\…