Menu Close

Category: None

x-6-8-x-A-x-Z-and-A-R-faid-x-

Question Number 167493 by mathlove last updated on 18/Mar/22 $$\sqrt{{x}+\mathrm{6}}+\sqrt{\mathrm{8}−{x}}={A} \\ $$$${x}\in{Z}\:\:\:{and}\:{A}\in{R}\:\:\:\:\:\:\:\:\:\overset{\:\:\:\:{faid}\:\:\Sigma{x}=?} {\:} \\ $$ Answered by Rasheed.Sindhi last updated on 18/Mar/22 $$\sqrt{{x}+\mathrm{6}}+\sqrt{\mathrm{8}−{x}}={A} \\ $$$${x}\in{Z}\:\:\:{and}\:{A}\in{R}\:\:\:\:\:\:\:\:\:{find}\:\Sigma{x}.…

x-a-2-1-1-x-b-2-1-2-1-x-a-b-1-x-b-a-1-2-x-a-x-b-2-1-2-1-x-a-b-2-1-2-1-1-x-a-b-2-1-2-1-

Question Number 167492 by mathlove last updated on 18/Mar/22 $${x}^{{a}} =\sqrt{\mathrm{2}}+\mathrm{1}\:\:\:\:\:………\left(\mathrm{1}\right)\: \\ $$$${x}^{{b}} =\sqrt{\mathrm{2}}−\mathrm{1}\:\:\:\:\:………\left(\mathrm{2}\right) \\ $$$$\frac{\mathrm{1}}{{x}^{{a}−{b}} }+\frac{\mathrm{1}}{{x}^{{b}−{a}} }=? \\ $$$$\left(\mathrm{1}\right)\boldsymbol{\div}\left(\mathrm{2}\right)\Rightarrow\frac{{x}^{{a}} }{{x}^{{b}} }=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}−\mathrm{1}}}\Rightarrow{x}^{{a}−{b}} =\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\:\sqrt{\mathrm{2}−\mathrm{1}}}\Rightarrow\frac{\mathrm{1}}{{x}^{{a}−{b}} }=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}….\left(\mathrm{3}\right) \\…

x-n-dx-

Question Number 167485 by Gbenga last updated on 17/Mar/22 $$\int\int\int\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} \boldsymbol{\mathrm{dx}} \\ $$ Answered by puissant last updated on 18/Mar/22 $$\int\int\int{x}^{{n}} {dx}\:=\:\int\int\left\{\frac{{x}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+{C}\right\}{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\int\left\{\frac{{x}^{{n}+\mathrm{2}}…

0-1-ln-x-cos-1-x-dx-

Question Number 167484 by Gbenga last updated on 17/Mar/22 $$\int_{\mathrm{0}} ^{\mathrm{1}} \boldsymbol{\mathrm{ln}}\left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{cos}}^{−\mathrm{1}} \left(\boldsymbol{\mathrm{x}}\right)\boldsymbol{\mathrm{dx}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

montrer-que-x-R-0-1-on-a-ln-x-x-1-lt-1-x-

Question Number 167482 by mathman1234 last updated on 17/Mar/22 $$\mathrm{montrer}\:\mathrm{que}\:\forall\mathrm{x}\in\mathbb{R}−\left\{\mathrm{0};\:\mathrm{1}\right\}\:\mathrm{on}\:\mathrm{a} \\ $$$$\frac{\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}−\mathrm{1}}\:<\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Given-a-circle-with-the-center-at-the-point-O-and-the-radius-of-the-length-R-From-a-point-A-outside-so-that-AO-2R-drawing-two-tangents-AB-and-AC-to-the-circle-B-and-C-are-the-tangency-points-Take-a

Question Number 101937 by 1549442205 last updated on 06/Jul/20 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{the}\:\mathrm{center}\:\mathrm{at}\:\mathrm{the}\:\mathrm{point}\:\mathrm{O}\: \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{length}\:\mathrm{R}.\mathrm{From}\:\mathrm{a}\:\mathrm{point}\:\mathrm{A}\:\mathrm{outside} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{AO}=\mathrm{2R},\mathrm{drawing}\:\mathrm{two}\:\mathrm{tangents}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{AC}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle} \\ $$$$\left(\mathrm{B}\:\mathrm{and}\:\mathrm{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{tangency}\:\mathrm{points}\right).\mathrm{Take}\:\mathrm{a}\:\mathrm{arbitrary}\:\mathrm{point}\:\mathrm{M} \\ $$$$\mathrm{on}\:\mathrm{smaller}\:\mathrm{arc}\:\mathrm{BC}\:\left(\mathrm{M}\:\mathrm{differ}\:\mathrm{from}\:\mathrm{B}\:\mathrm{and}\:\mathrm{C}\right) \\ $$$$\mathrm{The}\:\mathrm{tangent}\:\mathrm{pass}\:\mathrm{M}\:\mathrm{cuts}\:\mathrm{AB}\:\mathrm{and}\:\mathrm{AC}\:\mathrm{at}\:\mathrm{Pand}\:\mathrm{Q} \\ $$$$\mathrm{respectively}.\mathrm{The}\:\mathrm{segments}\:\mathrm{OP}\:\mathrm{and}\:\mathrm{OQ}\:\mathrm{cuts} \\ $$$$\mathrm{BC}\:\mathrm{at}\:\mathrm{D}\:\mathrm{and}\:\mathrm{E}\:\mathrm{respectively}. \\…

Question-167456

Question Number 167456 by Khalmohmmad last updated on 17/Mar/22 Answered by MJS_new last updated on 17/Mar/22 $$\mathrm{tan}\:\mathrm{760}\:\neq\mathrm{4} \\ $$$$\mathrm{tan}\:\mathrm{76}°\:\neq\mathrm{4} \\ $$$$\mathrm{sin}\:\mathrm{14}\:\approx.\mathrm{990607} \\ $$$$\mathrm{sin}\:\mathrm{14}°\:\approx.\mathrm{241922} \\ $$$$\mathrm{sin}^{\mathrm{2}}…