Menu Close

Category: None

Question-30813

Question Number 30813 by mondodotto@gmail.com last updated on 26/Feb/18 Answered by ajfour last updated on 26/Feb/18 $${y}^{\mathrm{2}} ={zx}\:\:\:,\:\:\:\mathrm{5}{y}=\mathrm{2}\left({x}+{z}\right)\:=\mathrm{2}\left(\mathrm{70}−{y}\right) \\ $$$$\Rightarrow\:\:\:{y}=\mathrm{20} \\ $$$${x}\:{and}\:{z}\:{are}\:{roots}\:{of} \\ $$$$\:\:\:\:\:{p}^{\mathrm{2}} −\mathrm{50}{p}−\mathrm{400}=\mathrm{0}…

Question-96330

Question Number 96330 by joki last updated on 31/May/20 Commented by prakash jain last updated on 31/May/20 $${area}\:{of}\:{sector}\:{AOB}=\frac{\mathrm{1}}{\mathrm{2}}\alpha{r}\mathrm{2} \\ $$$${area}\:{of}\:\bigtriangleup{AOB} \\ $$$$\:\:\:\:\:{Let}\:{X}\:\mathrm{be}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{lf}\:{AB} \\ $$$$\:\:\:\:\:{AX}={BX}={r}\mathrm{sin}\frac{\alpha}{\mathrm{2}}\: \\…

find-the-sum-1-4-1-3-4-6-1-3-5-4-6-8-find-x-x-3-x-dx-

Question Number 96317 by  M±th+et+s last updated on 31/May/20 $${find}\:{the}\:{sum} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}×\mathrm{3}}{\mathrm{4}×\mathrm{6}}+\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}}{\mathrm{4}×\mathrm{6}×\mathrm{8}}…..=? \\ $$$${find} \\ $$$$\int\frac{\sqrt{{x}}}{\:\sqrt{{x}}+\sqrt{\mathrm{3}−{x}}}{dx} \\ $$$$ \\ $$$$ \\ $$ Commented by bemath…

a-Let-E-x-denote-the-whole-number-part-of-the-real-number-x-determine-E-x-x-and-E-x-x-x-for-x-0-1-b-Calculate-lim-x-0-E-x-x-x-

Question Number 96314 by Ar Brandon last updated on 31/May/20 $$\mathfrak{a}\backslash\:\mathcal{L}\mathfrak{et}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}\right)\:\boldsymbol{\mathrm{d}}\mathfrak{enote}\:\mathfrak{the}\:\mathfrak{whole}\:\mathfrak{number}\:\mathfrak{part}\:\mathfrak{of}\:\mathfrak{the}\:\mathfrak{real} \\ $$$$\left.\mathfrak{number}\:\mathfrak{x},\:\boldsymbol{\mathrm{d}}\mathfrak{etermine}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}} \right)\:\mathfrak{an}\boldsymbol{\mathrm{d}}\:\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right)\:\mathfrak{for}\:\mathfrak{x}\in\right]\mathrm{0},\mathrm{1}\left[\right. \\ $$$$\mathfrak{b}\backslash\:\mathcal{C}\mathfrak{alculate}\:\underset{\mathfrak{x}\rightarrow\mathrm{0}} {\mathfrak{lim}}\boldsymbol{\mathrm{E}}\left(\mathfrak{x}^{\mathfrak{x}^{\mathfrak{x}} } \right) \\ $$ Terms of…

Question-30780

Question Number 30780 by mondodotto@gmail.com last updated on 25/Feb/18 Answered by Rasheed.Sindhi last updated on 25/Feb/18 $$\left(\mathrm{4x},\mathrm{4y},\mathrm{4z}\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\Rightarrow\mathrm{x},\mathrm{y},\mathrm{z}\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\right. \\ $$$$\left.\mathrm{because}\:\frac{\mathrm{4y}}{\mathrm{4x}}=\frac{\mathrm{4z}}{\mathrm{4y}}\Rightarrow\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{z}}{\mathrm{y}}\right) \\ $$$$\mathrm{y}=\mathrm{x}+\mathrm{d}\:,\mathrm{z}=\mathrm{x}+\mathrm{2d} \\ $$$$\mathrm{x}+\left(\mathrm{x}+\mathrm{d}\right)+\left(\mathrm{x}+\mathrm{2d}\right)=\mathrm{70} \\ $$$$\mathrm{3x}+\mathrm{3d}=\mathrm{70}\Rightarrow\mathrm{x}+\mathrm{d}=\frac{\mathrm{70}}{\mathrm{3}}\Rightarrow\mathrm{x}=\frac{\mathrm{70}−\mathrm{3d}}{\mathrm{3}}…