Question Number 22407 by mondodotto@gmail.com last updated on 17/Oct/17 Answered by $@ty@m last updated on 18/Oct/17 $$\because\:{GCF}\:{of}\:{the}\:{three}\:{numbers}\: \\ $$$${is}\:\mathrm{12} \\ $$$$\therefore\:{third}\:{number}\in\left\{\mathrm{12},\:\mathrm{24},\mathrm{36},\mathrm{48},…\right\} \\ $$$${Out}\:{of}\:{which}\:{only}\:\mathrm{24}\:{and}\:\mathrm{72}\:{satisfies} \\ $$$${the}\:{condition}\:{LCM}\left(\mathrm{12},\mathrm{36},\:{third}\:{no}.\right)=\mathrm{72}…
Question Number 153478 by naka3546 last updated on 07/Sep/21 $$\mathrm{2016}−\mathrm{2}{x}\:=\:\mid{x}−{a}\mid+\mid{x}−{b}\mid+\mid{x}−{c}\mid\:\:\:{has}\:\:{only}\:\:{one}\:\:{solution}\:. \\ $$$${a}<{b}<{c}\:\: \\ $$$${a},{b},{c}\:\in\:\mathbb{Z} \\ $$$${Find}\:\:{the}\:\:{lowest}\:\:{value}\:\:{of}\:\:{c}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153479 by naka3546 last updated on 07/Sep/21 $${Find}\:\:{area}\:\:{of}\:\:{region}\:\:{that}\:\:{satisfy}\:\: \\ $$$$\:\:\:\mid{x}−\mathrm{2}\mid\:+\:\mid{y}+\mathrm{3}\mid\:<\:\mathrm{3} \\ $$ Answered by aleks041103 last updated on 07/Sep/21 $${Translation}\:{doesn}'{t}\:{change}\:{the}\:{region}'{s} \\ $$$${area}.\:{Therefore}\:{we}\:{can}\:{find}\:{the}\:{area} \\…
Question Number 153472 by SANOGO last updated on 07/Sep/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 22404 by Sahib singh last updated on 17/Oct/17 $${Mr}\:{Tikutara},{Do}\:{you}\: \\ $$$${study}\:{at}\:{AAKASH}? \\ $$ Commented by Sahib singh last updated on 18/Oct/17 $${Teachers}\:{completed} \\…
Question Number 153457 by 0731619 last updated on 07/Sep/21 Answered by liberty last updated on 07/Sep/21 $${x}=\mathrm{3}\Rightarrow{p}\left(\mathrm{3}\right)=\frac{{p}\left(\mathrm{4}\right)}{\mathrm{3}}=\frac{\mathrm{12}}{\mathrm{3}}=\mathrm{4} \\ $$$${x}=\mathrm{2}\Rightarrow{p}\left(\mathrm{2}\right)=\frac{{p}\left(\mathrm{3}\right)}{\mathrm{2}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$ Answered by Rasheed.Sindhi last…
Question Number 22388 by gopikrishnan005@gmail.com last updated on 17/Oct/17 $${if}\:{t}_{\mathrm{1}} \:,{t}_{\mathrm{2}} \:{are}\:{the}\:{extremeties}\:{of}\:{any}\:{focal}\:{chord}\:{of}\:{the}\:{parabola}\:{y}^{\mathrm{2}} =\mathrm{4}{ax},{then}\:{t}_{\mathrm{1}} {t}_{\mathrm{2}=} \\ $$ Answered by math solver last updated on 17/Oct/17 $$−\mathrm{1}.\:{do}\:{you}\:{want}\:{proof}\:?…
Question Number 22387 by gopikrishnan005@gmail.com last updated on 17/Oct/17 $${the}\:{arguments}\:{of}\:{n}^{{th}} \:{roots}\:{of}\:{a}\:{complex}\:{number}\:{differ}\:{by} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 153432 by naka3546 last updated on 07/Sep/21 Commented by talminator2856791 last updated on 07/Sep/21 $$\:\mathrm{how}? \\ $$ Answered by talminator2856791 last updated on…
Question Number 153426 by SANOGO last updated on 07/Sep/21 Answered by puissant last updated on 07/Sep/21 $$\forall{x}\in\left[−\mathrm{1};\mathrm{1}\right]\:,\:{f}\left({x}\right)=\frac{\pi}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}.. \\ $$ Commented by SANOGO last updated…