Menu Close

Category: None

write-z-1-3-i-in-e-i-

Question Number 208398 by mokys last updated on 14/Jun/24 $${write}\:{z}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+{i}}\:{in}\:{e}^{{i}\theta} \\ $$ Answered by A5T last updated on 14/Jun/24 $${z}=\frac{\sqrt{\mathrm{3}}−{i}}{\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −\left({i}\right)^{\mathrm{2}} }=\frac{\sqrt{\mathrm{3}}−{i}}{\mathrm{4}},\:\mid{z}\mid=\sqrt{\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}\right)^{\mathrm{2}} +\left(\frac{−\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}} \\…

If-1-R-1-R-1-1-R-2-R-1-R-2-gt-0-and-R-1-R-2-C-Constant-then-prove-that-R-will-be-maximum-when-R-1-R-2-

Question Number 208215 by MATHEMATICSAM last updated on 07/Jun/24 $$\mathrm{If}\:\frac{\mathrm{1}}{\mathrm{R}}\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{2}} }\:\left[\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} \:>\:\mathrm{0}\right]\:\mathrm{and}\: \\ $$$$\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}_{\mathrm{2}} \:=\:\mathrm{C}\:\left(\mathrm{Constant}\right)\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{R}\:\mathrm{will}\:\mathrm{be}\:\mathrm{maximum}\:\mathrm{when}\:\mathrm{R}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{2}} . \\ $$ Answered…