Question Number 74527 by Maclaurin Stickker last updated on 25/Nov/19 Commented by Maclaurin Stickker last updated on 25/Nov/19 $${In}\:{the}\:{figure}\:{determine}\:{the}\:{radius} \\ $$$${of}\:{the}\:{smallest}\:{circumference}\:{as}\:{a} \\ $$$${function}\:{of}\:{the}\:{radius}\:\boldsymbol{\mathrm{R}}\:{of}\:{the}\:{quadrant}. \\ $$…
Question Number 8969 by lsaBELA last updated on 08/Nov/16 $${ls} \\ $$ Commented by 123456 last updated on 08/Nov/16 $$\mathrm{R}^{\mathrm{3}} \\ $$$${m}=\left\{\right\} \\ $$$$\mathrm{1}\leqslant{i}\leqslant{a};{m}\left[{i}\right]=\left\{\right\} \\…
Question Number 74503 by crystal0207 last updated on 25/Nov/19 Commented by mathmax by abdo last updated on 25/Nov/19 $$\left.{a}\right)\int_{\mathrm{0}} ^{\infty} \:{x}^{\alpha−\mathrm{1}} \:{e}^{−\lambda{x}} {dx}\:=_{\lambda{x}={t}} \:\:\:\:\int_{\mathrm{0}} ^{\infty}…
Question Number 8958 by Sopheak last updated on 07/Nov/16 $${Prove}\:{that}\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{2009}}=\mathrm{2009}−\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{4}}+…+\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\ $$ Answered by sou1618 last updated on 07/Nov/16 $$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}…+\frac{\mathrm{1}}{\mathrm{2009}} \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{0}}{\mathrm{1}}\right)+\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)+\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{4}}\right)…+\left(\mathrm{1}−\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\ $$$$=\mathrm{2009}−\left(\frac{\mathrm{0}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{4}}…+\frac{\mathrm{2008}}{\mathrm{2009}}\right) \\…
Question Number 8957 by Sopheak last updated on 07/Nov/16 $$\: \\ $$$${Let}\:{n}\:{be}\:{a}\:{positive}\:{integer}\:{such}\:{that}\:{one}\:{of} \\ $$$${the}\:{roofs}\:{of}\:{the}\:{quadratic}\:{equation}\: \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\left(\mathrm{4}\sqrt{\mathrm{3}}+\mathrm{4}\right){x}+\sqrt{\mathrm{3}}{n}−\mathrm{24}=\mathrm{0}\:{is}\:{an}\:{integer}\: \\ $$$${Find}\:{the}\:{value}\:{of}\:{n}\: \\ $$$$\: \\ $$ Commented by…
Question Number 74483 by liki last updated on 24/Nov/19 Commented by liki last updated on 24/Nov/19 $$…\:{sory}\:{mr}\:{w},{i}\:{tried}\:{to}\:{this}\:{qns}\:{according} \\ $$$$\:{to}\:{your}\:{idea}\:{but}\:{i}\:{didn}'{t}\:{get}\:{the}\:{answer}\:{so}\: \\ $$$$\:{plz}\:{assist}\:{me}! \\ $$ Commented by…
Question Number 8939 by arinto27 last updated on 07/Nov/16 $$\left.\mathrm{1}\right)\:\mathrm{diket}\:\mathrm{lingkaran}\:\mathrm{c}\:\mathrm{dg}\:\mathrm{pers}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6x}+\mathrm{2y}+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{diket}\:\mathrm{pula}\:\mathrm{titik}\:\mathrm{d}\:\left(\mathrm{a},−\mathrm{3}\right).\:\mathrm{agar}\:\mathrm{d}\:\mathrm{brd}\:\mathrm{di}\:\mathrm{dlm}\:\mathrm{lingkaran} \\ $$$$\mathrm{nilai}\:\mathrm{a}\:\mathrm{yg}\:\mathrm{memenuhi}\:\mathrm{adalah}…. \\ $$ Answered by sandy_suhendra last updated on 09/Nov/16…
Question Number 8946 by ridwan balatif last updated on 07/Nov/16 $$\mathrm{x}−\mathrm{y}=\mathrm{1}\:\mathrm{and}\:\mathrm{x}^{\mathrm{y}} =\mathrm{64},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}=…? \\ $$ Answered by Rasheed Soomro last updated on 07/Nov/16 $$\mathrm{x}−\mathrm{y}=\mathrm{1}\:\mathrm{and}\:\mathrm{x}^{\mathrm{y}} =\mathrm{64},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}=…? \\…
Question Number 140007 by SOMEDAVONG last updated on 03/May/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{x}} =? \\ $$ Answered by Ankushkumarparcha last updated on 03/May/21 $${Solution}:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{3}}{{x}}\right)^{{x}} =\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{e}^{\mathrm{log}_{{e}}…
Question Number 140002 by mohammad17 last updated on 03/May/21 Answered by MJS_new last updated on 03/May/21 $$\int\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{ln}\:\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{{x}}\:\rightarrow\:{dx}=−\frac{{x}^{\mathrm{2}} \sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{\mathrm{1}+\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dt}\right]…