Menu Close

Category: None

Question-139655

Question Number 139655 by mohammad17 last updated on 30/Apr/21 Answered by qaz last updated on 30/Apr/21 $$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\mathrm{tan}^{−\mathrm{1}} \left({x}\right){ln}\left({x}^{\mathrm{2}} +\mathrm{1}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{tan}^{−\mathrm{1}}…

Question-139645

Question Number 139645 by otchereabdullai@gmail.com last updated on 30/Apr/21 Commented by mr W last updated on 30/Apr/21 $${OD}={AO}×\mathrm{sin}\:\angle{OAB}=\mathrm{52}×\frac{\mathrm{5}}{\mathrm{13}}=\mathrm{20} \\ $$$${BD}=\sqrt{\mathrm{25}^{\mathrm{2}} −\mathrm{20}^{\mathrm{2}} }=\mathrm{15} \\ $$$${BC}=\mathrm{2}×{BD}=\mathrm{2}×\mathrm{15}=\mathrm{30} \\…

find-the-first-root-8i-1-2-

Question Number 139608 by mohammad17 last updated on 29/Apr/21 $${find}\:{the}\:{first}\:{root}\:\left(−\mathrm{8}{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$ Answered by floor(10²Eta[1]) last updated on 29/Apr/21 $$\sqrt{−\mathrm{8i}}=\mathrm{a}+\mathrm{bi} \\ $$$$−\mathrm{8i}=\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} +\mathrm{2abi} \\…