Menu Close

Category: None

find-S-1-1-1-1-1-1-1-1-1-1-1-1-2-1-2-1-2-1-3-1-3-1-3-1-4-1-4-1-4-1-5-

Question Number 206393 by MaruMaru last updated on 13/Apr/24 $$\mathrm{find}\:\mathrm{S}=\mathrm{1}+\underset{\ell} {\sum}\:\frac{\left(−\right)^{\ell} }{\ell}\left(\frac{\mathrm{1}}{\ell}−\frac{\mathrm{1}}{\ell+\mathrm{1}}\right)\:,\:\ell\in\left[\mathrm{1},\infty\right) \\ $$$$\mathrm{1}+\underset{\ell} {\sum}\:\frac{\left(−\right)^{\ell} }{\ell}\left(\frac{\mathrm{1}}{\ell}−\frac{\mathrm{1}}{\ell+\mathrm{1}}\right) \\ $$$$\mathrm{1}−\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}}\right)−…… \\ $$ Answered by MaruMaru last updated…

Question-206364

Question Number 206364 by Skabetix last updated on 12/Apr/24 Answered by TonyCWX08 last updated on 13/Apr/24 $${I}\:{only}\:{know} \\ $$$${e}^{\pi{i}} =−\mathrm{1} \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{\mathrm{sin}\:\left({x}\right)}{{x}}\:{dx}\:=\:\pi \\…

expression-of-the-sequence-a-n-defined-by-a-0-gt-0-a-1-gt-0-a-n-2-2-1-n-n-2-2-1-n-2n-3-n-2-a-n-1-n-1-n-2-a-n-

Question Number 206351 by MetaLahor1999 last updated on 12/Apr/24 $${expression}\:{of}\:{the}\:{sequence}\:\left({a}_{{n}} \right)\:{defined} \\ $$$${by}\: \\ $$$$\begin{cases}{{a}_{\mathrm{0}} >\mathrm{0}\:,\:{a}_{\mathrm{1}} >\mathrm{0}}\\{{a}_{{n}+\mathrm{2}} =\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{{n}+\mathrm{2}}−\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} \left(\mathrm{2}{n}+\mathrm{3}\right)}{{n}+\mathrm{2}}{a}_{{n}+\mathrm{1}} +\frac{{n}+\mathrm{1}}{{n}+\mathrm{2}}{a}_{{n}} }\end{cases} \\ $$ Commented…

3x-2-12x-5-x-2-4x-1-5-0-

Question Number 206251 by TonyCWX08 last updated on 10/Apr/24 $$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{12}{x}−\mathrm{5}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{1}}−\mathrm{5}=\mathrm{0} \\ $$ Answered by A5T last updated on 10/Apr/24 $$\mathrm{3}\left({x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{1}\right)−\mathrm{2}−\mathrm{5}\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}−\mathrm{1}}=\mathrm{0} \\…

Calcul-x-x-1-1-3-4-x-2-0-3-help-please-

Question Number 206150 by Samuel12 last updated on 08/Apr/24 $$\mathrm{Calcul}\:\:\:\mid\mathrm{x}−\alpha\mid\:=\:????? \\ $$$$\:\:\bullet\:\:\:\:\:\:\mathrm{x}=−\mathrm{1}\:\:;\:\:\:\alpha\:\in\:\left[−\mathrm{1};\:−\frac{\mathrm{3}}{\mathrm{4}}\right] \\ $$$$\:\:\bullet\:\:\:\:\mathrm{x}=\mathrm{2}\:\:;\:\:\:\:\alpha\:\in\:\left[\mathrm{0}\:;\:\mathrm{3}\right]\:\:\:\:\:\:\:\mathrm{help}\:\mathrm{please}\:\: \\ $$ Answered by Frix last updated on 08/Apr/24 $$\mid{x}−\alpha\mid=\begin{cases}{{x}−\alpha;\:{x}−\alpha\geqslant\mathrm{0}}\\{−\left({x}−\alpha\right);\:{x}−\alpha<\mathrm{0}}\end{cases} \\…

Find-total-number-of-solutions-of-the-equation-sinx-logx-

Question Number 206177 by MATHEMATICSAM last updated on 08/Apr/24 $$\mathrm{Find}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{sin}{x}\:=\:\mathrm{log}{x}. \\ $$ Answered by Frix last updated on 08/Apr/24 $$\mathrm{log}\:{x}\:=\mathrm{ln}\:{x}\:? \\ $$$$−\mathrm{1}\leqslant\mathrm{ln}\:{x}\:\leqslant\mathrm{1}\:\Leftrightarrow\:\mathrm{e}^{−\mathrm{1}} \leqslant{x}\leqslant\mathrm{e}…