Menu Close

Category: None

whats-the-suficient-condition-to-became-the-question-2-1-a-i-i-1-a-i-1-a-i-1-d-i-i-k-lt-0-

Question Number 205749 by mokys last updated on 29/Mar/24 $${whats}\:{the}\:{suficient}\:{condition}\:{to}\:{became}\:{the}\:{question}\: \\ $$$$ \\ $$$$\sigma^{\mathrm{2}} \left(\mathrm{1}−{a}_{{i}} \right)\left[\lambda_{{i}} \left(\mathrm{1}+{a}_{{i}} \right)−\left(\mathrm{1}−{a}_{{i}} \right)\left(\mathrm{1}−{d}_{{i}} \right)+\left(\lambda_{{i}} +{k}\right)\right]\:<\:\mathrm{0}\: \\ $$ Terms of…

Figure-Shows-that-Object-A-is-connected-to-Object-B-by-thread-along-the-Slope-it-shows-a-costant-acceleration-motion-the-mass-of-A-of-B-are-3m-2m-respectively-and-when-A-communicates-from-point-P-to

Question Number 205684 by MathedUp last updated on 27/Mar/24 $$\mathrm{Figure}\:\mathrm{Shows}\:\mathrm{that}\:\mathrm{Object}\:\boldsymbol{\mathrm{A}}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{Object}\:\boldsymbol{\mathrm{B}}\:\mathrm{by}\:\mathrm{thread}\:\mathrm{along}\:\mathrm{the}\:\mathrm{Slope} \\ $$$$\mathrm{it}\:\mathrm{shows}\:\mathrm{a}\:\mathrm{costant}\:\mathrm{acceleration}\:\mathrm{motion} \\ $$$$\mathrm{the}\:\mathrm{mass}\:\mathrm{of}\:\boldsymbol{\mathrm{A}}\:\mathrm{of}\:\boldsymbol{\mathrm{B}}\:\mathrm{are}\:\mathrm{3m}\:,\:\mathrm{2m} \\ $$$$\mathrm{respectively}\:\mathrm{and}\:\mathrm{when}\:\boldsymbol{\mathrm{A}}\:\mathrm{communicates}\:\mathrm{from}\:\mathrm{point}\:\boldsymbol{\mathrm{P}}\:\mathrm{to}\:\boldsymbol{\mathrm{Q}}\: \\ $$$$\boldsymbol{\mathrm{B}}'{s}\:\mathrm{the}\:\mathrm{decrease}\:\mathrm{in}\:\mathrm{potential}\:\mathrm{energy}\:\mathrm{is}\:\mathrm{10}\:\:\mathrm{times} \\ $$$$\mathrm{the}\:\mathrm{decrease}\:\mathrm{in}\:\mathrm{Kinetic}\:\mathrm{energy}\:\mathrm{of}\:\boldsymbol{\mathrm{B}}\: \\ $$$$\mathrm{find}\:\mathrm{accerate}\:\mathrm{of}\:\boldsymbol{\mathrm{A}}\:\left(\mathrm{3}\:\mathrm{point}\right) \\…

Question-205681

Question Number 205681 by naka3546 last updated on 27/Mar/24 Answered by mr W last updated on 27/Mar/24 $${a}=\mathrm{1}\:{cm} \\ $$$${R}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{6}} \\ $$$${r}=\frac{\sqrt{\mathrm{3}}{b}}{\mathrm{6}} \\ $$$$\frac{{b}}{{a}}=\frac{\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}−\mathrm{2}{R}}{\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{3}} \\…

Question-205656

Question Number 205656 by SANOGO last updated on 26/Mar/24 Answered by TheHoneyCat last updated on 31/Mar/24 $$\left(\mathrm{2}\right)\Rightarrow\left(\mathrm{1}\right) \\ $$$$\mathrm{Soit}\:{c}\in\mathbb{R}^{\ast} \:\mathrm{tel}\:\mathrm{que}\:\forall{x}\in{X}\:\:\mid\mid{T}\left({x}\right)\mid\mid_{{Y}} \:\geqslant{c}\mid\mid{x}\mid\mid_{{X}} \\ $$$$\mathrm{Soit}\:\left({x},{x}'\right)\in{X}^{\mathrm{2}} \\ $$$$\mid\mid{T}\left({x}\right)−{T}\left({x}'\right)\mid\mid…

Question-205627

Question Number 205627 by lmcp1203 last updated on 25/Mar/24 Answered by Rasheed.Sindhi last updated on 27/Mar/24 $$\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet\Bumpeq\bullet \\ $$$$\mathrm{2},\mathrm{6},\mathrm{12},\mathrm{20},\mathrm{30},…,{i}^{\mathrm{2}} +{i} \\ $$$${S}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({i}^{\mathrm{2}} +{i}\right)=\underset{{i}=\mathrm{1}}…

h-1-2h-1-h-h-1-2h-1-1-pls-help-me-

Question Number 205516 by MathedUp last updated on 23/Mar/24 $$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\boldsymbol{\zeta}\left(\mathrm{2}{h}\right)−\mathrm{1}}{{h}}\:=\:…..? \\ $$$$\underset{{h}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\boldsymbol{\zeta}\left(\mathrm{2}{h}+\mathrm{1}\right)−\mathrm{1}\right)=……? \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{me} \\ $$ Terms of Service Privacy Policy…

f-t-t-0-e-st-tanh-t-dt-lim-t-0-f-t-g-t-1-t-f-t-lim-n-g-n-h-1-n-1-h-

Question Number 205487 by MathedUp last updated on 22/Mar/24 $${f}\left({t}\right)={t}\centerdot\int_{\mathrm{0}} ^{\infty} \:{e}^{−{st}+\mathrm{tanh}\left({t}\right)} \mathrm{d}{t} \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({t}\right)=??? \\ $$$$\mathrm{g}\left({t}\right)=\frac{\mathrm{1}}{{t}}{f}\left({t}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left\{\mathrm{g}\left({n}\right)−\underset{{h}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{h}}\right\}=??? \\ $$…