Menu Close

Category: None

With-linear-functions-f-x-and-g-x-if-f-x-g-x-then-m-f-m-g-1-where-m-i-is-the-gradient-of-function-i-x-Does-that-therefore-mean-that-if-given-function-including-non-linear-f-x-f-x

Question Number 2249 by Filup last updated on 11/Nov/15 $$\mathrm{With}\:\mathrm{linear}\:\mathrm{functions}\:{f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right), \\ $$$$\mathrm{if}\:{f}\left({x}\right)\bot{g}\left({x}\right),\:\mathrm{then}: \\ $$$${m}_{{f}} {m}_{{g}} =−\mathrm{1}\:\:\:\:\mathrm{where}\:{m}_{{i}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{gradient} \\ $$$$\mathrm{of}\:\mathrm{function}\:{i}\left({x}\right). \\ $$$$ \\ $$$$\mathrm{Does}\:\mathrm{that}\:\mathrm{therefore}\:\mathrm{mean}\:\mathrm{that},\:\mathrm{if}\:\mathrm{given} \\ $$$$\mathrm{function}\:\left(\mathrm{including}\:\mathrm{non}−\mathrm{linear}\right)\:{f}\left({x}\right),…

an-object-placed-20cm-from-a-con-verving-lens-forms-a-mavnified-clear-image-on-the-screen-when-the-lens-is-moved-20cm-towards-the-screen-a-smaller-clear-image-is-formed-on-the-screen-calculate-the-

Question Number 133281 by aurpeyz last updated on 20/Feb/21 $${an}\:{object}\:{placed}\:\mathrm{20}{cm}\:{from}\:{a}\:{con}− \\ $$$${verving}\:{lens}\:{forms}\:{a}\:{mavnified}\:{clear} \\ $$$${image}\:{on}\:{the}\:{screen}.\:{when}\:{the}\:{lens} \\ $$$${is}\:{moved}\:\mathrm{20}{cm}\:{towards}\:{the}\:{screen} \\ $$$${a}\:{smaller}\:{clear}\:{image}\:{is}\:{formed}\:{on} \\ $$$${the}\:{screen}.\:{calculate}\:{the}\:{focal}\:{length} \\ $$$${of}\:{the}\:{lens} \\ $$ Terms…

Question-133242

Question Number 133242 by Kunal12588 last updated on 20/Feb/21 Commented by Kunal12588 last updated on 20/Feb/21 $$\mathrm{book}\:\mathrm{says}\:\mathrm{it}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{show}\:\mathrm{after}\:\mathrm{that} \\ $$$$\mathrm{but}\:\mathrm{how}?\:\mathrm{also}\:\mathrm{then}\:\mathrm{we}\:\mathrm{can}\:\mathrm{prove}\:\bigtriangleup\mathrm{ADB} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{36}°-\mathrm{72}°-\mathrm{72}°\:\mathrm{triangle} \\ $$ Terms of…

Give-S-n-n-1-2-n-1-k-1-n-2-k-k-Find-lim-n-S-n-

Question Number 133231 by SOMEDAVONG last updated on 20/Feb/21 $$\mathrm{Give}\:\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{2}^{\mathrm{k}} }{\mathrm{k}}\:\:.\mathrm{Find}\:\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}S}_{\mathrm{n}} \:. \\ $$ Answered by Ar Brandon last updated…