Question Number 66544 by naka3546 last updated on 17/Aug/19 $${Find}\:\:{a},\:{b},\:{c}\:\:{which}\:\:{fulfill}\:\:\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{{x}\left({a}\:+\:{b}\:\mathrm{cos}\:{x}\right)\:−\:{c}\:\mathrm{sin}\:{x}}{{x}^{\mathrm{5}} }\:\:=\:\:\mathrm{1} \\ $$ Answered by Tanmay chaudhury last updated on 17/Aug/19 $$\underset{{x}\rightarrow\mathrm{0}}…
Question Number 66543 by hmamarques1994@gmail.com last updated on 17/Aug/19 $$\:\mathrm{3}^{\boldsymbol{{x}}} =\mathrm{3}\boldsymbol{{x}} \\ $$$$\: \\ $$$$\:\boldsymbol{{x}}=? \\ $$ Commented by gunawan last updated on 17/Aug/19 $${x}=\mathrm{1}…
Question Number 1000 by rpatle69@gmail.com last updated on 13/May/15 $$\int{e}^{{x}\:\:} {sinx}\:{dx}=?\:\:{plz}\:{give}\:{me}\:{answer}\:{soon}. \\ $$ Commented by rpatle69@gmail.com last updated on 13/May/15 $${please}\:{soon}\:{guys} \\ $$ Answered by…
Question Number 132068 by Algoritm last updated on 10/Feb/21 Commented by mr W last updated on 11/Feb/21 $${did}\:{you}\:{create}\:{this}\:{question}\:{by}\:{yourself} \\ $$$${or}\:{you}\:{took}\:{is}\:{from}\:{somewhere}? \\ $$ Terms of Service…
Question Number 132055 by Study last updated on 10/Feb/21 $${prove}\:{that}\:\:\:{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} ={s}^{\mathrm{2}} −\mathrm{2}{p} \\ $$$${x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}} \:{are}\:{roots}\:{of}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$ Commented by JDamian…
Question Number 972 by tera last updated on 09/May/15 $$\boldsymbol{{bisa}}\:\boldsymbol{{bahasa}}\:\boldsymbol{{indonesia}}? \\ $$ Commented by 123456 last updated on 10/May/15 $${allahu}\:{akbar} \\ $$ Terms of Service…
Question Number 966 by rpatle69@gmail.com last updated on 09/May/15 $$\int{e}^{−{x}} \:{dx}=?\:{please}\:{answer}\:{me}\:{soon}\:{guys} \\ $$$$ \\ $$$$ \\ $$ Answered by prakash jain last updated on 09/May/15…
Question Number 132032 by mohammad17 last updated on 10/Feb/21 $${we}\:{say}\:{that}\:{Log}\left({z}_{\mathrm{1}} {z}_{\mathrm{2}} \right)={Log}\left({z}_{\mathrm{1}} \right)+{Log}\left({z}_{\mathrm{2}} \right) \\ $$$${when}:\:{Re}\left({z}_{\mathrm{1}} \right)\leqslant\mathrm{0}\:{and}\:{Re}\left({z}_{\mathrm{2}} \right)\leqslant\mathrm{0} \\ $$$${prove}\:{this}\:? \\ $$ Commented by mohammad17…
Question Number 66478 by hmamarques1994@gmail.com last updated on 15/Aug/19 $$\: \\ $$$$\:\underset{\boldsymbol{{x}}\rightarrow\mathrm{2}} {\boldsymbol{{lim}}}\left[\frac{\boldsymbol{{log}}_{\boldsymbol{{x}}} \left(\mathrm{2}\right)−\mathrm{1}}{\boldsymbol{{log}}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)+\mathrm{1}}\right]=? \\ $$$$\: \\ $$ Commented by gunawan last updated on…
Question Number 931 by sai dinesh last updated on 29/Apr/15 $$\mathrm{4}.\mathrm{4}.\mathrm{4}.\mathrm{4}=\mathrm{20}? \\ $$$${in}\:{this}\:{question}\:{the}\:.\:{representss} \\ $$$${any}\:{symbol}\:{find}? \\ $$ Answered by prakash jain last updated on 29/Apr/15…