Menu Close

Category: Operation Research

x-x-1-x-2-y-y-1-y-2-0-1-4-0-1-x-y-med-1-x-1-y-1-1-y-1-x-1-2-1-x-2-y-2-1-y-2-x-2-2-med-x-y-min-x-y-max-x-y-2-x-y-y-x-x-y-0-x-y-x

Question Number 1448 by 123456 last updated on 05/Aug/15 $$\boldsymbol{{x}}=\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} \right),\boldsymbol{{y}}=\left({y}_{\mathrm{1}} ,{y}_{\mathrm{2}} \right) \\ $$$$\eta:\left[\mathrm{0},\mathrm{1}\right)^{\mathrm{4}} \rightarrow\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\eta\left(\boldsymbol{{x}},\boldsymbol{{y}}\right):=\mathrm{med}\left[\frac{\left(\mathrm{1}−{x}_{\mathrm{1}} \right)^{{y}_{\mathrm{1}} } +\left(\mathrm{1}−{y}_{\mathrm{1}} \right)^{{x}_{\mathrm{1}} } }{\mathrm{2}},\frac{\left(\mathrm{1}−{x}_{\mathrm{2}}…

W-f-x-t-0-1-t-f-x-ln-xt-dx-t-gt-0-W-f-x-g-x-t-W-f-x-t-W-g-x-t-W-cf-x-t-cW-f-x-t-W-1-t-W-x-t-W-x-n-t-n-N-W-f-x-t-

Question Number 1351 by 123456 last updated on 24/Jul/15 $$\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right)=\underset{\mathrm{0}} {\overset{\mathrm{1}/{t}} {\int}}{f}\left({x}\right)\mathrm{ln}\left({xt}\right){dx},{t}>\mathrm{0} \\ $$$$\mathcal{W}\left\{{f}\left({x}\right)+{g}\left({x}\right)\right\}\left({t}\right)\overset{?} {=}\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right)+\mathcal{W}\left\{{g}\left({x}\right)\right\}\left({t}\right) \\ $$$$\mathcal{W}\left\{{cf}\left({x}\right)\right\}\left({t}\right)\overset{?} {=}{c}\mathcal{W}\left\{{f}\left({x}\right)\right\}\left({t}\right) \\ $$$$\mathcal{W}\left\{\mathrm{1}\right\}\left({t}\right)=? \\ $$$$\mathcal{W}\left\{{x}\right\}\left({t}\right)=? \\ $$$$\mathcal{W}\left\{{x}^{{n}} \right\}\left({t}\right)=?,{n}\in\mathbb{N}…

Question-66875

Question Number 66875 by Cmr 237 last updated on 20/Aug/19 Commented by mathmax by abdo last updated on 20/Aug/19 $${convergence}\:{of}\:{this}\:{serie}\:\:\:{let}\:\varphi\left({t}\right)\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} {sin}^{\mathrm{2}} {t}}\:\:{with}\:{t}>\mathrm{1} \\ $$$${we}\:{have}\:\varphi^{'} \left({t}\right)\:=\:−\frac{\mathrm{3}{t}^{\mathrm{2}}…

f-0-1-R-g-0-1-N-R-g-n-x-f-g-n-1-x-g-0-x-x-A-f-n-0-1-f-t-g-n-t-dt-A-f-g-A-f-A-g-A-kf-kA-f-

Question Number 1055 by 123456 last updated on 24/May/15 $$\:{f}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\mathbb{R} \\ $$$${g}:\left[\mathrm{0},\mathrm{1}\right]×\mathbb{N}\rightarrow\mathbb{R} \\ $$$${g}_{{n}} \left({x}\right)={f}\left[{g}_{{n}−\mathrm{1}} \left({x}\right)\right] \\ $$$${g}_{\mathrm{0}} \left({x}\right)={x} \\ $$$$\mathscr{A}\left\{{f}\right\}\left({n}\right)=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{f}\left({t}\right){g}_{{n}} \left({t}\right){dt} \\…

x-i-f-i-N-f-0-1-x-2-i-f-2-i-2-2if-f-2-x-R-i-2f-2-x-2-2i-f-2-2if-0-x-2-i-2-f-2-

Question Number 1034 by 123456 last updated on 21/May/15 $${x}={i}+{f},{i}\in\mathbb{N},{f}\in\left[\mathrm{0},\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} =\left({i}+{f}\right)^{\mathrm{2}} ={i}^{\mathrm{2}} +\mathrm{2}{if}+{f}^{\mathrm{2}} \\ $$$${x}\in\mathbb{R}_{+} \\ $$$${i}+\mathrm{2}{f}=\mathrm{2}\Rightarrow{x}^{\mathrm{2}} =\mathrm{2}{i}+{f}^{\mathrm{2}} \\ $$$$\mathrm{2}{if}=\mathrm{0}\Rightarrow{x}^{\mathrm{2}} ={i}^{\mathrm{2}} +{f}^{\mathrm{2}} \\…

lets-R-2-R-defined-by-x-y-x-x-y-1-x-y-y-x-2-x-y-z-x-y-z-3-e-x-R-x-e-x-4-e-x-R-e-x-x-

Question Number 746 by 123456 last updated on 06/Mar/15 $${lets}\:\boxplus:\left(\mathbb{R}^{+} \right)^{\mathrm{2}} \rightarrow\mathbb{R}^{+} \\ $$$${defined}\:{by}\:{x}\boxplus{y}=\sqrt{\lfloor{x}\rfloor\lceil{x}\rceil}+{y} \\ $$$$\mathrm{1}.\:{x}\boxplus{y}\overset{?} {=}{y}\boxplus{x} \\ $$$$\mathrm{2}.{x}\boxplus\left({y}\boxplus{z}\right)\overset{?} {=}\left({x}\boxplus{y}\right)\boxplus{z} \\ $$$$\mathrm{3}.\exists{e},\forall{x}\in\mathbb{R}^{+} ,{x}\boxplus{e}={x}\:? \\ $$$$\mathrm{4}.\exists{e},\forall{x}\in\mathbb{R}^{+}…