Menu Close

Category: Others

The-points-A-B-C-represent-the-complex-numbers-z-1-z-2-z-3-respectively-And-G-is-the-centroid-of-the-triangle-A-B-C-if-4z-1-z-2-z-3-0-show-that-the-origin-is-the-mid-point-of

Question Number 51320 by Tawa1 last updated on 25/Dec/18 $$\mathrm{The}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C}\:\:\mathrm{represent}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:\:\mathrm{z}_{\mathrm{1}} ,\:\mathrm{z}_{\mathrm{2}} ,\:\mathrm{z}_{\mathrm{3}} \: \\ $$$$\mathrm{respectively}.\:\mathrm{And}\:\mathrm{G}\:\mathrm{is}\:\mathrm{the}\:\mathrm{centroid}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{A}\:\mathrm{B}\:\mathrm{C},\:\:\mathrm{if} \\ $$$$\mathrm{4z}_{\mathrm{1}} \:+\:\mathrm{z}_{\mathrm{2}} \:+\:\mathrm{z}_{\mathrm{3}} \:\:=\:\:\mathrm{0},\:\:\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{origin}\:\mathrm{is}\:\mathrm{the}\:\mathrm{mid}\:\mathrm{point}\:\mathrm{of}\:\:\mathrm{AG}. \\ $$ Answered by tanmay.chaudhury50@gmail.com…

Question-51316

Question Number 51316 by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18 Commented by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18 Commented by Cheyboy last updated on 26/Dec/18 $$\mathrm{Waaw}!!\:\mathrm{this}\:\mathrm{is}\:\mathrm{very}\:\:\mathrm{good}.\mathrm{thank} \\…

what-the-value-of-i-

Question Number 116822 by bemath last updated on 07/Oct/20 $$\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:=? \\ $$ Commented by Dwaipayan Shikari last updated on 07/Oct/20 $$\sqrt{{i}}=\left(\sqrt{\frac{\mathrm{2}{i}}{\mathrm{2}}}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\sqrt{\left(\mathrm{1}+\mathrm{2}{i}+{i}^{\mathrm{2}} \right)}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$ Answered…

If-x-is-real-show-that-2-j-e-1-j3-x-2-j-e-1-j3-x-is-also-real-

Question Number 51284 by Tawa1 last updated on 25/Dec/18 $$\mathrm{If}\:\:\boldsymbol{\mathrm{x}}\:\mathrm{is}\:\mathrm{real},\:\mathrm{show}\:\mathrm{that}\:\:\left(\mathrm{2}\:+\:\mathrm{j}\right)\mathrm{e}^{\left(\mathrm{1}\:+\:\mathrm{j3}\right)\boldsymbol{\mathrm{x}}} \:+\:\left(\mathrm{2}\:−\:\boldsymbol{\mathrm{j}}\right)\boldsymbol{\mathrm{e}}^{\left(\mathrm{1}\:−\:\boldsymbol{\mathrm{j}}\mathrm{3}\right)\boldsymbol{\mathrm{x}}} \\ $$$$\mathrm{is}\:\mathrm{also}\:\mathrm{real} \\ $$ Commented by maxmathsup by imad last updated on 25/Dec/18 $${first}\:{what}\:{mean}\:{j}\:{and}\:{j}\mathrm{3}?…

Given-that-z-1-R-1-R-j-L-z-2-R-2-z-3-1-j-C-3-and-z-4-R-4-1-j-C-4-and-also-that-z-1-z-3-z-2-z-4-express-R-and-L-in-terms-of-the-real-constants-R-

Question Number 51250 by Tawa1 last updated on 25/Dec/18 $$\mathrm{Given}\:\mathrm{that}\:\:\:\mathrm{z}_{\mathrm{1}} \:=\:\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{R}\:+\:\mathrm{j}\omega\mathrm{L}\:;\:\:\:\mathrm{z}_{\mathrm{2}} \:=\:\mathrm{R}_{\mathrm{2}} \:;\:\:\mathrm{z}_{\mathrm{3}} \:=\:\frac{\mathrm{1}}{\mathrm{j}\omega\mathrm{C}_{\mathrm{3}} } \\ $$$$\mathrm{and}\:\:\mathrm{z}_{\mathrm{4}} \:=\:\mathrm{R}_{\mathrm{4}} \:+\:\frac{\mathrm{1}}{\mathrm{j}\omega\mathrm{C}_{\mathrm{4}} }\:\:\mathrm{and}\:\mathrm{also}\:\mathrm{that}\:\:\:\mathrm{z}_{\mathrm{1}} \mathrm{z}_{\mathrm{3}} \:\:=\:\:\mathrm{z}_{\mathrm{2}} \mathrm{z}_{\mathrm{4}} \:,\:\:\:\mathrm{express}\:…

If-R-1-j-L-R-3-R-2-R-4-j-1-C-where-R-1-R-2-R-3-R-4-L-and-C-are-real-show-that-L-C-R-2-R-3-2-C-2-R-4-2-1-

Question Number 51248 by Tawa1 last updated on 25/Dec/18 $$\mathrm{If}\:\:\:\:\:\frac{\mathrm{R}_{\mathrm{1}} \:+\:\mathrm{j}\omega\mathrm{L}}{\mathrm{R}_{\mathrm{3}} }\:\:=\:\:\frac{\mathrm{R}_{\mathrm{2}} }{\mathrm{R}_{\mathrm{4}} \:−\:\mathrm{j}\:\frac{\mathrm{1}}{\omega\mathrm{C}}}\:\:,\:\:\:\mathrm{where}\:\:\mathrm{R}_{\mathrm{1}} ,\:\mathrm{R}_{\mathrm{2}} ,\:\mathrm{R}_{\mathrm{3}} ,\:\mathrm{R}_{\mathrm{4}} ,\:\omega,\:\mathrm{L}\:\mathrm{and}\:\mathrm{C} \\ $$$$\mathrm{are}\:\mathrm{real}\:,\:\:\mathrm{show}\:\mathrm{that}\:\:\:\:\mathrm{L}\:=\:\frac{\mathrm{C}\:\mathrm{R}_{\mathrm{2}} \mathrm{R}_{\mathrm{3}} }{\omega^{\mathrm{2}} \mathrm{C}^{\mathrm{2}} \mathrm{R}_{\mathrm{4}} ^{\mathrm{2}}…