Menu Close

Category: Others

x-y-z-0-2x-3y-z-0-x-4y-2z-0-find-the-value-of-x-y-and-z-

Question Number 180447 by Mastermind last updated on 12/Nov/22 $$\mathrm{x}\:+\:\mathrm{y}\:−\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2x}\:−\:\mathrm{3y}\:+\:\mathrm{z}\:=\:\mathrm{0} \\ $$$$\mathrm{x}\:−\mathrm{4y}\:+\:\mathrm{2z}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x},\mathrm{y},\:\mathrm{and}\:\mathrm{z} \\ $$ Commented by mr W last…

Question-49283

Question Number 49283 by Pk1167156@gmail.com last updated on 05/Dec/18 Answered by afachri last updated on 05/Dec/18 $$\:\:\mathrm{1}.\:\:\:{a}^{\mathrm{2}} +\:{b}^{\mathrm{2}} +\:{c}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\:\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{2}} \:−\:\mathrm{2}\left({ab}\:+\:{bc}\:+\:{ac}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{2}\left({ab}\:+\:{bc}\:+\:{ac}\right)\:\:\:\:\:\:=\:\:\:\mathrm{9}\:−\:\mathrm{9} \\ $$$$\:\:\:\:\:\:\:\left(\boldsymbol{{ab}}\:+\:\boldsymbol{{bc}}\:+\:\boldsymbol{{ac}}\right)\:\:\:\:\:\:=\:\:\:\mathrm{0}…

Question-180301

Question Number 180301 by Noorzai last updated on 10/Nov/22 Commented by MJS_new last updated on 10/Nov/22 $$\mathrm{this}\:\mathrm{has}\:\mathrm{the}\:\mathrm{shape} \\ $$$${a}^{{x}} +\frac{\mathrm{1}}{{a}^{{x}} }={b}^{{x}} \\ $$$$\mathrm{which}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{for}\:{b}: \\ $$$${b}=\sqrt[{{x}}]{{a}^{{x}}…

Express-these-both-Cartesian-and-polar-form-1-f-z-3z-2-2z-1-z-2-f-z-z-1-z-Thanks-

Question Number 180295 by Mastermind last updated on 10/Nov/22 $$\mathrm{Express}\:\mathrm{these}\:\mathrm{both}\:\mathrm{Cartesian}\:\mathrm{and}\: \\ $$$$\mathrm{polar}\:\mathrm{form} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{3z}^{\mathrm{2}} −\mathrm{2z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{f}\left(\mathrm{z}\right)=\mathrm{z}+\frac{\mathrm{1}}{\mathrm{z}} \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Thanks} \\ $$…

Express-this-f-z-2z-i-z-i-in-polar-form-where-z-re-i-polar-form-

Question Number 180285 by Mastermind last updated on 09/Nov/22 $$\mathrm{Express}\:\mathrm{this}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2z}+\mathrm{i}}{\mathrm{z}+\mathrm{i}}\:\mathrm{in}\:\mathrm{polar}\:\mathrm{form} \\ $$$$\mathrm{where}\:\mathrm{z}=\mathrm{re}^{\mathrm{i}\theta} \:\left(\mathrm{polar}\:\mathrm{form}\right) \\ $$$$ \\ $$ Commented by Frix last updated on 09/Nov/22 $$\mathrm{do}\:\mathrm{some}\:\mathrm{work}\:\mathrm{too}…