Menu Close

Category: Others

Solve-the-differential-equation-dy-dx-1-y-2-y-1-x-2-

Question Number 175888 by Mastermind last updated on 08/Sep/22 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{1}+\mathrm{y}^{\mathrm{2}} }{\mathrm{y}\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)} \\ $$ Answered by mahdipoor last updated on 08/Sep/22 $$\Rightarrow\int\frac{{y}}{\mathrm{1}+{y}^{\mathrm{2}} }{dy}=\int\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}}…

Solve-the-differential-equation-2-2xy-4y-3-dx-x-2-2-dy-0-Mastermind-

Question Number 175746 by Mastermind last updated on 06/Sep/22 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\mathrm{2}\left(\mathrm{2xy}+\mathrm{4y}−\mathrm{3}\right)\mathrm{dx}+\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \mathrm{dy}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{Mastermind} \\ $$ Answered by floor(10²Eta[1]) last updated on…

let-p-x-x-6-ax-5-bx-4-cx-3-dx-2-ex-f-be-a-polynomial-function-such-that-p-1-1-p-2-2-p-3-3-p-4-4-p-5-5-p-6-6-then-find-p-7-

Question Number 175624 by infinityaction last updated on 04/Sep/22 $$\mathrm{let}\:\mathrm{p}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{6}} +\mathrm{ax}^{\mathrm{5}} +\mathrm{bx}^{\mathrm{4}} +\mathrm{cx}^{\mathrm{3}} +\mathrm{dx}^{\mathrm{2}} +\mathrm{ex}+\mathrm{f} \\ $$$$\:\:\mathrm{be}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function}\:\mathrm{such} \\ $$$$\:\:\mathrm{that}\:\:\mathrm{p}\left(\mathrm{1}\right)\:=\:\mathrm{1}\:;\:\mathrm{p}\left(\mathrm{2}\right)\:=\:\mathrm{2}\:;\:\:\mathrm{p}\left(\mathrm{3}\right)\:=\:\mathrm{3} \\ $$$$\:\:\mathrm{p}\left(\mathrm{4}\right)\:=\:\mathrm{4}\:;\:\mathrm{p}\left(\mathrm{5}\right)\:=\:\mathrm{5}\:;\:\mathrm{p}\left(\mathrm{6}\right)\:=\:\mathrm{6}\:\:\mathrm{then} \\ $$$$\:\:\mathrm{find}\:\:\mathrm{p}\left(\mathrm{7}\right)\:=\:? \\ $$…

Question-109922

Question Number 109922 by Ar Brandon last updated on 26/Aug/20 Answered by 1549442205PVT last updated on 26/Aug/20 $$\mathrm{3x}^{\mathrm{2}} +\mathrm{12xy}+\mathrm{6y}=\mathrm{0}\Leftrightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{4xy}+\mathrm{2y}=\mathrm{0}\left(\mathrm{1}\right) \\ $$$$\left.\mathrm{i}\right)\mathrm{Case}\:\mathrm{x}=\mathrm{0}\Rightarrow\mathrm{y}=\mathrm{0}\:\mathrm{substituting}\:\mathrm{into}\:\mathrm{first}\:\mathrm{eqn}. \\ $$$$\mathrm{we}\:\mathrm{see}\:\mathrm{it}\:\mathrm{satisfy},\mathrm{so} \\…

If-f-x-y-f-x-f-y-for-real-x-y-and-f-0-0-Let-F-x-f-x-1-f-x-2-then-F-x-is-a-even-b-odd-c-neither-even-nor-odd-

Question Number 44350 by Necxx last updated on 27/Sep/18 $${If}\:{f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right)\:{for}\:{real}\:{x},{y} \\ $$$${and}\:{f}\left(\mathrm{0}\right)\neq\mathrm{0}.{Let}\:{F}\left({x}\right)=\frac{{f}\left({x}\right)}{\mathrm{1}+\left({f}\left({x}\right)\right)^{\mathrm{2}} } \\ $$$${then}\:{F}\left({x}\right)\:{is} \\ $$$$\left.{a}\left.\right)\left.{even}\:{b}\right){odd}\:{c}\right){neither}\:{even}\:{nor}\:{odd} \\ $$ Commented by maxmathsup by imad last…