Menu Close

Category: Others

f-R-R-is-defined-by-f-x-1-1-if-x-Z-if-x-Z-Is-f-continuous-at-x-1-and-x-3-2-

Question Number 25825 by rita1608 last updated on 15/Dec/17 $${f}:{R}\rightarrow{R}\:{is}\:{defined}\:{by}\: \\ $$$${f}\left({x}\right)=\left\{\underset{−\mathrm{1}\:\:{if}\:{x}\notin{Z}} {\mathrm{1}}\:\:\:\mathrm{if}\:\mathrm{x}\in{Z}\right. \\ $$$${Is}\:{f}\:{continuous}\:{at}\:{x}=\mathrm{1}\:{and}\:{x}=−\frac{\mathrm{3}}{\mathrm{2}}\:\int? \\ $$$$ \\ $$ Answered by prakash jain last updated…

find-gt-0-such-that-f-x-1-lt-0-01-when-0-lt-x-2-lt-where-f-x-x-2-5x-6-x-2-hence-use-definition-to-show-that-lim-xtends-2-f-x-1-

Question Number 25814 by rita1608 last updated on 15/Dec/17 $${find}\:\delta>\mathrm{0}\:{such}\:{that}\:\mid{f}\left({x}\right)+\mathrm{1}\mid<\mathrm{0}.\mathrm{01} \\ $$$${when}\:\mathrm{0}<\mid{x}−\mathrm{2}\mid<\delta,{where} \\ $$$${f}\left({x}\right)=\frac{{x}^{\mathrm{2}} −\mathrm{5}{x}+\mathrm{6}}{{x}−\mathrm{2}},{hence}\:{use}\:\varepsilon\_\delta\:\: \\ $$$${definition}\:{to}\:{show}\:{that}\: \\ $$$$\frac{{lim}}{{xtends}\:\mathrm{2}}{f}\left({x}\right)=−\mathrm{1} \\ $$ Answered by ajfour last…

Question-25778

Question Number 25778 by yesaditya22@gmail.com last updated on 14/Dec/17 Answered by Rasheed.Sindhi last updated on 14/Dec/17 $$\mathrm{9}=\frac{\mathrm{35}+\mathrm{28}}{\mathrm{7}}\:,\mathrm{12}=\frac{\mathrm{45}+\mathrm{39}}{\mathrm{7}} \\ $$$$\mathrm{So}\:?=\frac{\mathrm{51}+\mathrm{68}}{\mathrm{7}}=\mathrm{17} \\ $$ Terms of Service Privacy…

Question-91302

Question Number 91302 by 174 last updated on 29/Apr/20 Answered by MJS last updated on 29/Apr/20 $$\int\mathrm{e}^{{x}} \frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx}= \\ $$$$=\int\frac{\mathrm{e}^{{x}} }{{x}^{\mathrm{2}} +\mathrm{1}}{dx}−\mathrm{2}\int\frac{\mathrm{e}^{{x}}…

Question-91303

Question Number 91303 by 174 last updated on 29/Apr/20 Commented by mathmax by abdo last updated on 29/Apr/20 $${A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{cos}^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right){dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right){dx} \\…

find-the-surface-area-of-the-solid-formed-by-the-rotation-of-the-arc-of-the-cycloid-x-a-t-sin-t-y-a-1-cost-about-x-axis-

Question Number 25744 by rita1608 last updated on 13/Dec/17 $${find}\:{the}\:{surface}\:{area}\:{of}\:{the}\:{solid}\: \\ $$$${formed}\:{by}\:{the}\:{rotation}\:{of}\:{the}\:{arc}\:{of}\: \\ $$$${the}\:{cycloid}\:{x}={a}\left({t}+{sin}\:{t}\right),\: \\ $$$${y}={a}\left(\mathrm{1}+{cost}\right)\:{about}\:{x}\:{axis} \\ $$ Answered by ajfour last updated on 14/Dec/17…