Menu Close

Category: Others

Two-objects-slide-over-a-frictionless-horizontal-surface-The-first-object-mass-m-1-5-kg-is-propelled-with-a-speed-u-4-5-m-s-towards-the-second-object-mass-m-2-5-kg-which-is-initially-at-r

Question Number 25058 by Tinkutara last updated on 02/Dec/17 $${Two}\:{objects}\:{slide}\:{over}\:{a}\:{frictionless} \\ $$$${horizontal}\:{surface}.\:{The}\:{first}\:{object}, \\ $$$${mass}\:{m}_{\mathrm{1}} \:=\:\mathrm{5}\:{kg},\:{is}\:{propelled}\:{with}\:{a} \\ $$$${speed}\:{u}\:=\:\mathrm{4}.\mathrm{5}\:{m}/{s}\:{towards}\:{the}\:{second} \\ $$$${object},\:{mass}\:{m}_{\mathrm{2}} \:=\:\mathrm{5}\:{kg},\:{which}\:{is} \\ $$$${initially}\:{at}\:{rest}.\:{After}\:{the}\:{collision}, \\ $$$${both}\:{objects}\:{have}\:{velocities}\:{which}\:{are} \\…

given-that-and-are-roots-of-the-equation-a-2-b-c-0-show-that-b-2-ac-2-where-

Question Number 90581 by hardylanes last updated on 24/Apr/20 $${given}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{the}\:{equation}\: \\ $$$${a}\chi^{\mathrm{2}} +{b}\chi+{c}=\mathrm{0}.\:{show}\:{that}\:\lambda\mu{b}^{\mathrm{2}} ={ac}\left(\lambda+\mu\right)^{\mathrm{2}\:} \\ $$$${where}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu} \\ $$ Answered by maths mind last updated on…

For-a-particle-of-a-rotating-rigid-body-v-r-So-1-1-r-2-v-3-v-r-4-is-independent-of-r-

Question Number 25038 by Tinkutara last updated on 02/Dec/17 $$\mathrm{For}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{a}\:\mathrm{rotating}\:\mathrm{rigid}\:\mathrm{body}, \\ $$$${v}\:=\:{r}\omega.\:\mathrm{So} \\ $$$$\left(\mathrm{1}\right)\:\omega\:\propto\:\left(\mathrm{1}/{r}\right) \\ $$$$\left(\mathrm{2}\right)\:\omega\:\propto\:{v} \\ $$$$\left(\mathrm{3}\right)\:{v}\:\propto\:{r} \\ $$$$\left(\mathrm{4}\right)\:\omega\:\mathrm{is}\:\mathrm{independent}\:\mathrm{of}\:{r} \\ $$ Answered by ajfour…

With-reference-to-figure-of-a-cube-of-edge-a-and-mass-m-state-whether-the-following-are-true-or-false-O-is-the-centre-of-the-cube-1-The-moment-of-inertia-of-cube-about-z-axis-is-I-z-I-x-

Question Number 25013 by Tinkutara last updated on 01/Dec/17 $$\mathrm{With}\:\mathrm{reference}\:\mathrm{to}\:\mathrm{figure}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cube}\:\mathrm{of} \\ $$$$\mathrm{edge}\:{a}\:\mathrm{and}\:\mathrm{mass}\:{m},\:\mathrm{state}\:\mathrm{whether}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{are}\:\mathrm{true}\:\mathrm{or}\:\mathrm{false}.\:\left(\mathrm{O}\:\mathrm{is}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}.\right) \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\ $$$$\mathrm{about}\:{z}-\mathrm{axis}\:\mathrm{is},\:{I}_{{z}} \:=\:{I}_{{x}} \:+\:{I}_{{y}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{moment}\:\mathrm{of}\:\mathrm{inertia}\:\mathrm{of}\:\mathrm{cube} \\…

find-the-minimum-of-expression-M-cos-A-B-2-sin-A-2-sin-B-2-

Question Number 156065 by VIDDD last updated on 07/Oct/21 $$\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{of}\:\mathrm{expression}\:\mathrm{M}=\boldsymbol{\mathrm{cos}}\frac{\boldsymbol{\mathrm{A}}−\boldsymbol{\mathrm{B}}}{\mathrm{2}}\mathrm{sin}\frac{\boldsymbol{\mathrm{A}}}{\mathrm{2}}\mathrm{sin}\frac{\boldsymbol{\mathrm{B}}}{\mathrm{2}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-156059

Question Number 156059 by cortano last updated on 07/Oct/21 Commented by john_santu last updated on 07/Oct/21 $${g}\left({x}\right)=\mathrm{3}{x}^{\mathrm{3}} +\left({h}\left({x}\right)\left({x}^{\mathrm{4}} −\mathrm{3}{x}+\mathrm{1}\right)+\mathrm{2}{x}^{\mathrm{3}} −\mathrm{7}{x}\right)^{\mathrm{2}} \\ $$$$\frac{{g}\left({x}\right)}{{x}^{\mathrm{4}} −\mathrm{3}{x}+\mathrm{1}}=\:{u}\left({x}\right)\left({x}^{\mathrm{4}} −\mathrm{3}{x}+\mathrm{1}\right)+{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}}…

cos-pi-8-with-solution-plz-

Question Number 156058 by VIDDD last updated on 07/Oct/21 $$\:\:{cos}\frac{\pi}{\mathrm{8}}=…?\:\:{with}\:{solution}\:{plz} \\ $$ Answered by cortano last updated on 07/Oct/21 $$\:\mathrm{cos}\:\frac{\pi}{\mathrm{4}}=\mathrm{2cos}\:^{\mathrm{2}} \frac{\pi}{\mathrm{8}}−\mathrm{1} \\ $$$$\:\mathrm{cos}\:\frac{\pi}{\mathrm{8}}=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\frac{\pi}{\mathrm{4}}}{\mathrm{2}}} \\ $$…