Question Number 84359 by TawaTawa1 last updated on 12/Mar/20 Commented by TawaTawa1 last updated on 12/Mar/20 $$\mathrm{Please}\:\mathrm{help}.\:\:\mathrm{With}\:\mathrm{diagram}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sirs} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 84341 by Rio Michael last updated on 11/Mar/20 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{symmetry}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{curve}: \\ $$$$\:\:\:\:{y}\:=\:\frac{\mathrm{1}}{{x}\:+\:\mathrm{2}} \\ $$ Commented by mr W last updated on 11/Mar/20…
Question Number 149865 by Naser last updated on 07/Aug/21 Answered by mr W last updated on 07/Aug/21 Commented by mr W last updated on 07/Aug/21…
Question Number 84323 by Rio Michael last updated on 11/Mar/20 $$\mathrm{A}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}\:{OX}\:\mathrm{has}\:\mathrm{a} \\ $$$$\mathrm{displacement}\:{x}\:\mathrm{from}\:{O}\:\mathrm{at}\:\mathrm{time}\:{t}\:\mathrm{where}\:{x}\:\mathrm{satisfies} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} \:}\:+\:\mathrm{2}\frac{{dx}}{{dt}}\:+\:\mathrm{3}{x}\:=\:\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{damping}\:\mathrm{factor}\:\mathrm{for}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{is} \\ $$$$\left[\mathrm{A}\right]\:{e}^{−\mathrm{1}} \\ $$$$\left[\mathrm{B}\right]\:{e}^{−\mathrm{2}{t}} \\ $$$$\left[\mathrm{C}\right]\:{e}^{−\mathrm{3}{t}}…
Question Number 84316 by Rio Michael last updated on 11/Mar/20 $$\mathrm{Which}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{sets}\:\mathrm{of} \\ $$$$\mathrm{vectors}\:\mathrm{is}\:\mathrm{a}\:\mathrm{basis}\:\mathrm{for}\:\mathbb{R}^{\mathrm{2}} \\ $$$$\left[\mathrm{A}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{−\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{−\mathrm{3}}\\{\mathrm{6}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{B}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{2}}\\{\mathrm{2}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{C}\right]\:\left\{\begin{pmatrix}{\mathrm{2}}\\{\mathrm{1}}\end{pmatrix}\:,\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix}\right\} \\ $$$$\left[\mathrm{D}\right]\:\left\{\begin{pmatrix}{\mathrm{1}}\\{\mathrm{2}}\end{pmatrix}\:,\:\begin{pmatrix}{\mathrm{4}}\\{\mathrm{8}}\end{pmatrix}\:\right\} \\ $$ Commented by…
Question Number 18763 by Tinkutara last updated on 29/Jul/17 Commented by ajfour last updated on 29/Jul/17 $$\mathrm{n}=\mathrm{2},\:\mathrm{angle}\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\:\mathrm{with}\:\mathrm{south} \\ $$$$\mathrm{direction}. \\ $$ Commented by Tinkutara…
Question Number 18749 by Tinkutara last updated on 29/Jul/17 $$\mathrm{Motion}\:\mathrm{in}\:\mathrm{two}\:\mathrm{dimensions},\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{position}, \\ $$$$\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{as}\:\mathrm{vectors}\:\mathrm{in} \\ $$$$\mathrm{Cartesian}\:\mathrm{co}-\mathrm{ordinates}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{x}} \overset{\wedge} {{i}}\:+\:{A}_{{y}} \overset{\wedge} {{j}} \\ $$$$\mathrm{where}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{along}\:{x}…
Question Number 84263 by Rio Michael last updated on 10/Mar/20 $$\mathrm{Using}\:\mathrm{the}\:\mathrm{approximation} \\ $$$$\:{h}\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:{y}_{{n}+\mathrm{1}} −{y}_{{n}} \:\mathrm{and}\:\mathrm{that}\:\frac{{dy}}{{dx}}\:=\:\mathrm{1},\:{y}\:=\mathrm{2} \\ $$$$\mathrm{when}\:{x}\:=\:\mathrm{0}\:.\:\mathrm{then}\:,\:{y}_{\mathrm{1}} \:= \\ $$$$\left[\mathrm{A}\right]\:{h}−\mathrm{2} \\ $$$$\left[\mathrm{B}\right]\:{h}\:+\:\mathrm{2} \\ $$$$\left[\mathrm{C}\right]\:{h}−\mathrm{1}…
Question Number 84242 by Rio Michael last updated on 10/Mar/20 $$\underset{\mathrm{0}} {\overset{\mathrm{ln2}} {\int}}\frac{\mathrm{1}}{\mathrm{cosh}\left({x}\:+\:\mathrm{ln4}\right)}{dx} \\ $$ Commented by mathmax by abdo last updated on 10/Mar/20 $${I}\:=\int_{\mathrm{0}}…
Question Number 84231 by Rio Michael last updated on 10/Mar/20 $$\mathrm{A}\:\mathrm{compound}\:\mathrm{pendulum}\:\mathrm{oscillates}\:\mathrm{though}\:\mathrm{a} \\ $$$$\mathrm{small}\:\mathrm{angle}\:\theta\:\mathrm{about}\:\mathrm{its}\:\mathrm{equilibrium}\:\mathrm{position} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\:\:\:\mathrm{10}{a}\left(\frac{{d}\theta}{{dt}}\right)^{\mathrm{2}} \:=\:\mathrm{4}{g}\:\mathrm{cos}\:\theta\:,\:{a}\:>\mathrm{0}\:.\:\mathrm{its}\:\mathrm{period}\:\mathrm{is}\: \\ $$$$\left[\mathrm{A}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{\mathrm{4}{g}}\:\:}\:\:\:\left[\mathrm{B}\right]\:\frac{\mathrm{2}\pi}{\mathrm{5}}\sqrt{\frac{{a}}{{g}}}\:\:\left[\mathrm{C}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{2}{g}}{\mathrm{5}{a}}\:}\:\:\left[\mathrm{D}\right]\:\mathrm{2}\pi\sqrt{\frac{\mathrm{5}{a}}{{g}}}\: \\ $$ Answered by TANMAY…