Question Number 81518 by TawaTawa last updated on 13/Feb/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 81514 by mathocean1 last updated on 13/Feb/20 $${Hello}\:{sirs}\:…\:{what}\:{are}\:{the}\:{graphic} \\ $$$${maker}\:{Apps}\:{can}\:{you}\:{suggest}\:{me}\: \\ $$$${for}\:{my}\:{android}\:{phone}\:…{please}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 15967 by tawa tawa last updated on 16/Jun/17 $$\mathrm{prove}\:\mathrm{that} \\ $$$$\left(\mathrm{4cos9}°\:−\:\mathrm{3}\right)\left(\mathrm{4cos27}°\:−\:\mathrm{3}\right)\:=\:\mathrm{tan9}° \\ $$ Commented by sandy_suhendra last updated on 16/Jun/17 $$\mathrm{I}\:\mathrm{think}\:\mathrm{it}\:\mathrm{must}\:\mathrm{be}\:\left(\mathrm{4cos}^{\mathrm{2}} \mathrm{9}−\mathrm{3}\right)\left(\mathrm{4cos}^{\mathrm{2}} \mathrm{27}−\mathrm{3}\right)=\mathrm{tan}\:\mathrm{9}…
Question Number 15961 by Tinkutara last updated on 16/Jun/17 $$\mathrm{Path}\:\mathrm{of}\:\mathrm{a}\:\mathrm{projectile}\:\mathrm{as}\:\mathrm{seen}\:\mathrm{from}\:\mathrm{another} \\ $$$$\mathrm{projectile}\:\mathrm{is}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Ellipse} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Hyperbola} \\ $$ Commented by mrW1…
Question Number 15955 by Tinkutara last updated on 16/Jun/17 $$\mathrm{The}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{along} \\ $$$${x}-\mathrm{axis}\:\mathrm{is}\:\mathrm{represented}\:\mathrm{by}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\frac{{dv}}{{dt}}\:=\:\mathrm{6}\:−\:\mathrm{3}{v},\:\mathrm{where}\:{v}\:\mathrm{is}\:\mathrm{in}\:\mathrm{m}/\mathrm{s}\:\mathrm{and}\:{t}\:\mathrm{is} \\ $$$$\mathrm{in}\:\mathrm{second}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{at}\:\mathrm{rest}\:\mathrm{at}\:{t}\:= \\ $$$$\mathrm{0},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{The}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{2}\:\mathrm{m}/\mathrm{s} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{particle}\:\mathrm{is} \\ $$$$\mathrm{zero} \\…
Question Number 15939 by tawa tawa last updated on 15/Jun/17 Commented by Tinkutara last updated on 16/Jun/17 $$\mathrm{Is}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{C}?\:\mathrm{Please}\:\mathrm{check}\:\mathrm{the} \\ $$$$\mathrm{answer}. \\ $$ Terms of Service…
Question Number 147007 by Ar Brandon last updated on 17/Jul/21 Answered by Olaf_Thorendsen last updated on 17/Jul/21 $$\left(\mathrm{1}\right) \\ $$$${f}\left({x}\right)\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{a}_{{n}} {x}^{{n}} \\ $$$${f}'\left({x}\right)\:=\:\underset{{n}=\mathrm{1}}…
Question Number 15932 by Tinkutara last updated on 15/Jun/17 $$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{an}\:\mathrm{inclined}\:\mathrm{plane}\:\mathrm{having}\:\mathrm{inclination} \\ $$$$\mathrm{45}°,\:\mathrm{with}\:\mathrm{the}\:\mathrm{velocity}\:{u}\:\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta \\ $$$$\left(>\:\mathrm{45}°\right)\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{in}\:\mathrm{a}\:\mathrm{vertical} \\ $$$$\mathrm{plane}\:\mathrm{containing}\:\mathrm{the}\:\mathrm{line}\:\mathrm{of}\:\mathrm{greatest} \\ $$$$\mathrm{slope}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\mathrm{of}\:\mathrm{projection}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{tan}\:\theta\:\mathrm{if}\:\mathrm{the}\:\mathrm{particle} \\ $$$$\mathrm{strikes}\:\mathrm{the}\:\mathrm{plane} \\…
Question Number 81458 by jagoll last updated on 13/Feb/20 $$\mathrm{if}\:\mathrm{a}_{\mathrm{1}} \:=\:\mathrm{3}\:,\mathrm{a}_{\mathrm{2}} =\mathrm{2} \\ $$$$\mathrm{a}_{\mathrm{n}+\mathrm{2}} \:=\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} +\frac{\mathrm{a}_{\mathrm{1}} }{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{a}_{\mathrm{6}} \:=? \\ $$$$\mathrm{mister}\:\mathrm{W}\:\mathrm{method} \\ $$$$\mathrm{a}_{\mathrm{n}} \:=\mathrm{A}\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{n}}…
Question Number 15906 by Tinkutara last updated on 15/Jun/17 $$\mathrm{If}\:\lambda_{\mathrm{1}} \:\mathrm{and}\:\lambda_{\mathrm{2}} \:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the} \\ $$$$\mathrm{wavelengths}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{Lyman} \\ $$$$\mathrm{and}\:\mathrm{Balmer}\:\mathrm{series}\:\mathrm{of}\:\mathrm{Hydrogen}\:\mathrm{atom}, \\ $$$$\mathrm{then}\:\mathrm{the}\:\mathrm{wavelength}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{line}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{Lyman}\:\mathrm{series}\:\mathrm{of}\:\mathrm{the}\:\mathrm{H}-\mathrm{atom}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\lambda_{\mathrm{1}} \:−\:\lambda_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\sqrt{\lambda_{\mathrm{1}}…