Menu Close

Category: Others

dx-1-x-

Question Number 80515 by M±th+et£s last updated on 03/Feb/20 $$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\phi} \right)^{\phi} } \\ $$ Commented by john santu last updated on 04/Feb/20 $${t}\:=\:\mathrm{1}+{x}^{\phi} \:\Rightarrow{x}=\left({t}−\mathrm{1}\right)^{\frac{\mathrm{1}}{\phi}} \\…

Given-that-7-k-1-mod-15-a-Write-down-three-values-of-k-b-Find-the-general-solution-of-the-equation-7-k-1-mod-15-

Question Number 80505 by Rio Michael last updated on 03/Feb/20 $$\mathrm{Given}\:\mathrm{that}\:\:\mathrm{7}^{{k}} \:\equiv\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{15}\right) \\ $$$$\left.\mathrm{a}\right)\:\mathrm{Write}\:\mathrm{down}\:\mathrm{three}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{equation}\:\:\mathrm{7}^{{k}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{15}\right) \\ $$ Commented by mr W…

Two-30-ohms-resistor-are-connected-in-parallel-what-should-be-the-resistance-to-be-connected-in-series-with-this-parallel-combination-such-that-the-power-in-each-30-ohms-is-1-4-th-of-total-power-

Question Number 14962 by tawa tawa last updated on 06/Jun/17 $$\mathrm{Two}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{resistor}\:\mathrm{are}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{parallel},\:\mathrm{what}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{resistance} \\ $$$$\mathrm{to}\:\mathrm{be}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{this}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{power} \\ $$$$\mathrm{in}\:\mathrm{each}\:\mathrm{30}\:\mathrm{ohms}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{th}\:\mathrm{of}\:\mathrm{total}\:\mathrm{power}. \\ $$ Answered by ajfour last updated on 06/Jun/17 $$\frac{{P}}{\mathrm{4}}={I}^{\mathrm{2}}…

A-resistor-R-is-connected-in-series-with-a-parallel-combination-of-two-resistors-of-24-and-8-ohms-The-total-power-disipated-in-the-circuit-is-64-watt-when-the-applied-voltage-is-24-volt-Find-R-

Question Number 14963 by tawa tawa last updated on 06/Jun/17 $$\mathrm{A}\:\mathrm{resistor}\:\mathrm{R}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{in}\:\mathrm{series}\:\mathrm{with}\:\mathrm{a}\:\mathrm{parallel}\:\mathrm{combination}\:\mathrm{of}\:\mathrm{two}\:\mathrm{resistors} \\ $$$$\mathrm{of}\:\mathrm{24}\:\mathrm{and}\:\mathrm{8}\:\mathrm{ohms}\:.\:\mathrm{The}\:\mathrm{total}\:\mathrm{power}\:\mathrm{disipated}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circuit}\:\mathrm{is}\:\mathrm{64}\:\mathrm{watt}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{applied}\:\mathrm{voltage}\:\mathrm{is}\:\mathrm{24}\:\mathrm{volt}.\mathrm{Find}\:\mathrm{R} \\ $$ Answered by ajfour last updated on 06/Jun/17 $$\:{P}=\frac{{V}^{\mathrm{2}}…

Question-14816

Question Number 14816 by tawa tawa last updated on 04/Jun/17 Answered by arnabpapu550@gmail.com last updated on 08/Jun/17 $$\mathrm{Answer}\:\mathrm{to}\:\mathrm{part}\:\mathrm{1} \\ $$$$\mathrm{Given}\:,\:\mathrm{x}=\frac{\mathrm{5}}{\mathrm{3}}\mathrm{t}^{\mathrm{3}} −\frac{\mathrm{5}}{\mathrm{2}}\mathrm{t}^{\mathrm{2}} −\mathrm{30t}+\mathrm{8x} \\ $$$$\mathrm{differentiating}\:\mathrm{both}\:\mathrm{side}\:\mathrm{with}\:\mathrm{t}, \\…

If-P-a-b-c-d-c-d-a-b-Q-a-b-c-d-b-a-d-c-are-permutations-of-the-elements-a-b-c-d-then-QP-

Question Number 80340 by Rio Michael last updated on 02/Feb/20 $$\mathrm{If}\:{P}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{c}}&{{d}}&{{a}}&{{b}}\end{pmatrix}\:\:,\:{Q}\:=\:\begin{pmatrix}{{a}}&{{b}}&{{c}}&{{d}}\\{{b}}&{{a}}&{{d}}&{{c}}\end{pmatrix}\:\mathrm{are} \\ $$$$\mathrm{permutations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{elements}\:\left({a},{b},{c},{d}\right),\:\mathrm{then}\: \\ $$$${QP}\:\equiv \\ $$$$\: \\ $$ Answered by MJS last updated on…

A-particle-moves-round-the-polar-curve-r-a-1-cos-with-constant-angular-velocity-Find-the-transverse-component-of-the-velocity-

Question Number 80341 by Rio Michael last updated on 02/Feb/20 $$\mathrm{A}\:\mathrm{particle}\:\mathrm{moves}\:\mathrm{round}\:\mathrm{the}\:\mathrm{polar}\:\mathrm{curve} \\ $$$${r}\:=\:{a}\left(\mathrm{1}\:+\:\mathrm{cos}\:\theta\right)\:\mathrm{with}\:\mathrm{constant}\:\mathrm{angular}\: \\ $$$$\mathrm{velocity}\:\omega\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{transverse}\:\mathrm{component} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{velocity}. \\ $$ Answered by mr W last updated…