Question Number 197470 by Mastermind last updated on 18/Sep/23 $${Solve}\:{the}\:{following}\:{equation} \\ $$$${x}\:+\:\mathrm{2}{y}\:+\:\mathrm{2}{z}\:=\:\mathrm{0} \\ $$$$\mathrm{2}{x}\:+\:{y}\:−\:\mathrm{2}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:+\:\mathrm{4}{y}\:−\:\mathrm{6}{z}\:=\mathrm{0} \\ $$$$\mathrm{3}{x}\:−\:\mathrm{11}{y}\:+\:\mathrm{12}{z}\:=\:\mathrm{0} \\ $$ Answered by MathedUp last updated…
Question Number 197459 by MathematicalUser2357 last updated on 18/Sep/23 $$\mathrm{Is}\:\mathrm{complex}\:\mathrm{infinity}\:\mathrm{big}? \\ $$$$\overset{\sim} {\infty}=\infty\centerdot\left(\mathrm{1}+{i}\right) \\ $$$$\mathrm{Their}\:\mathrm{absolute}\:\mathrm{value}\:\mathrm{is}\:\mathrm{big} \\ $$$$\mid\overset{\sim} {\infty}\mid>\mid\infty\mid \\ $$ Commented by TheHoneyCat last updated…
Question Number 197449 by mohaa last updated on 17/Sep/23 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 197371 by Mastermind last updated on 15/Sep/23 Answered by Rasheed.Sindhi last updated on 15/Sep/23 $${d}:{dog},\:{c}:{cat},\:{r}:{rat} \\ $$$${d}+{r}=\mathrm{20}…\left({i}\right) \\ $$$${c}+{r}=\mathrm{10}…\left({ii}\right) \\ $$$${d}+{c}=\mathrm{24}…\left({iii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)+\left({iii}\right):…
Question Number 197184 by pete last updated on 10/Sep/23 $$\mathrm{Show}\:\mathrm{that}\:\mathrm{log}\left(−\mathrm{log}{i}\right)=\mathrm{log}\left(\frac{\pi}{\mathrm{2}}\right)−{i}\frac{\pi}{\mathrm{2}} \\ $$ Answered by Frix last updated on 10/Sep/23 $$\mathrm{ln}\:\left(−\mathrm{ln}\:\mathrm{i}\right)\:=\mathrm{ln}\:\frac{\pi}{\mathrm{2}}\:−\mathrm{i}\frac{\pi}{\mathrm{2}} \\ $$$$−\mathrm{ln}\:\mathrm{i}\:=\mathrm{e}^{\mathrm{ln}\:\frac{\pi}{\mathrm{2}}\:−\mathrm{i}\frac{\pi}{\mathrm{2}}} \\ $$$$−\mathrm{ln}\:\mathrm{i}\:=\frac{\pi}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\pi}{\mathrm{2}}} \\…
Question Number 197185 by MathematicalUser2357 last updated on 10/Sep/23 $$\mathrm{Simplify} \\ $$$$\sqrt[{\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}}]{\frac{\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{3}}} \centerdot\left(\sqrt{\mathrm{3}}\right)^{\sqrt{\mathrm{2}}} +\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{12}}} }{\left(\sqrt{\mathrm{6}}\right)^{\sqrt{\mathrm{2}}} +\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}} }} \\ $$ Answered by som(math1967) last updated on…
Question Number 197052 by pete last updated on 07/Sep/23 $$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{sin}^{−\mathrm{1}} \sqrt{\mathrm{2}} \\ $$ Answered by Frix last updated on 07/Sep/23 $$\mathrm{sin}\:{x}\:=\sqrt{\mathrm{2}} \\ $$$${x}=\left(\mathrm{2}{n}−\frac{\mathrm{1}}{\mathrm{2}}\right)\pi\pm\mathrm{i}\:\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\mathrm{You}\:\mathrm{get}\:\mathrm{this}\:\mathrm{using}…
Question Number 197089 by pete last updated on 07/Sep/23 $$\mathrm{Simplify}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}\mathrm{i}}{\mathrm{1}−\sqrt{\mathrm{3}}\mathrm{i}}\right)^{\mathrm{10}} \\ $$ Answered by JDamian last updated on 07/Sep/23 $$\left(\frac{{z}}{{z}^{\ast} }\right)^{{n}} =\left(\frac{\cancel{\mid{z}\mid}\centerdot{e}^{{i}\varphi} }{\cancel{\mid{z}\mid}\centerdot{e}^{−{i}\varphi} }\right)^{{n}} ={e}^{{i}\mathrm{2}{n}\varphi}…
Question Number 196780 by Tawa11 last updated on 31/Aug/23 A tugboat is travelling from Asaba to Onitsha across the River Niger with a resultant velocity…
Question Number 196738 by Tawa11 last updated on 30/Aug/23 Commented by Tawa11 last updated on 30/Aug/23 $$\mathrm{Please}\:\mathrm{is}\:\mathrm{this}\:\mathrm{solution}\:\mathrm{correct}???. \\ $$$$ \\ $$$$\mathrm{My}\:\mathrm{thinking}. \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{force} \\ $$$$\mathrm{that}\:\mathrm{should}\:\mathrm{accelerate}\:\mathrm{the}\:\mathrm{body},\:\mathrm{not}\:\mathrm{resultant}\:\mathrm{force}.…