Menu Close

Category: Others

If-c-gt-0-and-4a-c-lt-2b-then-ax-2-bx-c-0-has-a-root-in-which-intervals-a-0-2-b-2-3-c-3-4-d-2-0-

Question Number 12305 by Gaurav3651 last updated on 18/Apr/17 $${If}\:{c}>\mathrm{0}\:{and}\:\mathrm{4}{a}+{c}<\mathrm{2}{b},{then} \\ $$$${ax}^{\mathrm{2}} −{bx}+{c}=\mathrm{0}\:{has}\:{a}\:{root}\:{in}\:{which} \\ $$$${intervals}? \\ $$$$\left({a}\right)\:\:\left(\mathrm{0},\mathrm{2}\right) \\ $$$$\left({b}\right)\:\:\left(\mathrm{2},\mathrm{3}\right) \\ $$$$\left({c}\right)\:\:\left(\mathrm{3},\mathrm{4}\right) \\ $$$$\left({d}\right)\:\:\left(−\mathrm{2},\mathrm{0}\right) \\ $$…

How-many-geometric-progressions-is-are-possible-contauning-27-8-and-12-as-three-of-its-their-terms-a-1-b-2-c-4-d-infinitely-many-

Question Number 12304 by Gaurav3651 last updated on 18/Apr/17 $${How}\:{many}\:{geometric}\:{progressions} \\ $$$${is}/{are}\:{possible}\:{contauning}\:\mathrm{27},\mathrm{8} \\ $$$${and}\:\mathrm{12}\:{as}\:{three}\:{of}\:{its}/{their}\:{terms}? \\ $$$$\left({a}\right)\:\:\mathrm{1} \\ $$$$\left({b}\right)\:\:\mathrm{2} \\ $$$$\left({c}\right)\:\:\mathrm{4} \\ $$$$\left({d}\right)\:\:{infinitely}\:{many} \\ $$$$ \\…

Multi-point-x-x-3-well-be-equal-to-the-values-of-the-function-ant-its-harvest-

Question Number 12207 by @ANTARES_VY last updated on 16/Apr/17 $$\boldsymbol{\mathrm{Multi}}−\boldsymbol{\mathrm{point}}\:\:\:\oint\left(\boldsymbol{\mathrm{x}}\right)=\boldsymbol{\mathrm{x}}^{\mathrm{3}} \:\:\boldsymbol{\mathrm{well}}\:\boldsymbol{\mathrm{be}} \\ $$$$\boldsymbol{\mathrm{equal}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{function}} \\ $$$$\boldsymbol{\mathrm{ant}}\:\:\boldsymbol{\mathrm{its}}\:\:\boldsymbol{\mathrm{harvest}}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-143238

Question Number 143238 by BHOOPENDRA last updated on 11/Jun/21 Answered by mathmax by abdo last updated on 11/Jun/21 $$\Phi=\int_{\mathrm{C}} \frac{\mathrm{cos}\left(\pi\mathrm{z}^{\mathrm{2}} \right)+\mathrm{sin}\left(\pi\mathrm{z}^{\mathrm{2}} \right)}{\left(\mathrm{z}+\mathrm{1}\right)\left(\mathrm{z}+\mathrm{2}\right)}\mathrm{dz}\:\:\mathrm{let}\:\Psi\left(\mathrm{z}\right)=\frac{\mathrm{cos}\left(\pi\mathrm{z}^{\mathrm{2}} \right)+\mathrm{sin}\left(\pi\mathrm{z}^{\mathrm{2}} \right)}{\left(\mathrm{z}+\mathrm{1}\right)\left(\mathrm{z}+\mathrm{2}\right)} \\…

n-0-1-2021-n-n-n-0-1-2021-n-0-t-n-e-t-dt-

Question Number 143225 by Canebulok last updated on 11/Jun/21 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left({n}!\right)}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\frac{\mathrm{1}}{\left(\mathrm{2021}^{{n}} \right)\left(\int_{\mathrm{0}} ^{\:\infty} {t}^{{n}} .{e}^{−{t}} \:\:{dt}\right)} \\ $$ Answered by Dwaipayan…