Menu Close

Category: Others

Question-66356

Question Number 66356 by sandeepkeshari0797@gmail.com last updated on 13/Aug/19 Answered by $@ty@m123 last updated on 13/Aug/19 $${Let}\:{the}\:{number}=\mathrm{10}{x}+{y} \\ $$$${ATQ}, \\ $$$$\mathrm{9}\left(\mathrm{10}{x}+{y}\right)=\mathrm{2}\left(\mathrm{10}{y}+{x}\right) \\ $$$$\mathrm{90}{x}+\mathrm{9}{y}=\mathrm{20}{y}+\mathrm{2}{x} \\ $$$$\mathrm{88}{x}=\mathrm{11}{y}…

n-1-1-n-e-2pin-1-

Question Number 131877 by Dwaipayan Shikari last updated on 09/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}\left({e}^{\mathrm{2}\pi{n}} −\mathrm{1}\right)} \\ $$ Commented by Dwaipayan Shikari last updated on 09/Feb/21 $${I}\:{have}\:{found}\:…

1-1-3-1-2-3-1-5-3-1-10-3-1-17-3-1-26-3-1-37-3-1-50-3-1-65-3-1-82-3-1-101-3-

Question Number 131795 by Dwaipayan Shikari last updated on 08/Feb/21 $$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{10}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{17}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{26}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{37}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{50}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{65}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{82}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{101}^{\mathrm{3}} }+… \\ $$ Answered…

tan-x-tan-2x-tan-4x-tan-2-n-x-

Question Number 702 by 123456 last updated on 01/Mar/15 $$\mathrm{tan}\:{x}+\mathrm{tan}\:\mathrm{2}{x}+\mathrm{tan}\:\mathrm{4}{x}+\centerdot\centerdot\centerdot+\mathrm{tan}\:\mathrm{2}^{{n}} {x}=? \\ $$ Commented by prakash jain last updated on 01/Mar/15 $$\mathrm{Do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{a}\:\mathrm{closed}\:\mathrm{form}\:\mathrm{expression}? \\ $$ Commented…

Using-a-good-counter-procedure-prove-that-y-x-lim-x-0-f-x-f-x-x-for-a-given-function-f-x-in-x-

Question Number 66227 by Rio Michael last updated on 11/Aug/19 $${Using}\:{a}\:{good}\:{counter}\:{procedure},\:{prove}\:{that}\: \\ $$$$\:\:\:\frac{\partial{y}}{\partial{x}}\:=\:\underset{\partial{x}\rightarrow\mathrm{0}} {{lim}}\frac{{f}\left(\partial\:+\:{x}\right)\:−{f}\left({x}\right)}{\partial{x}} \\ $$$${for}\:{a}\:{given}\:{function}\:\:{f}\left({x}\right)\:{in}\:{x}. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

the-equation-f-x-0-has-real-roots-in-the-interval-a-b-if-A-f-a-gt-0-and-f-b-gt-0-B-f-a-lt-0-and-f-b-lt-0-C-f-a-gt-0-and-f-b-0-D-f-a-gt-0-and-f-b-lt-0-

Question Number 66226 by Rio Michael last updated on 11/Aug/19 $${the}\:{equation}\:\:{f}\left({x}\right)=\mathrm{0}\:{has}\:{real}\:{roots}\:{in}\: \\ $$$${the}\:{interval}\:\left({a},\:{b}\right)\:{if} \\ $$$${A}\:\:\:\:−{f}\left({a}\right)>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:>\mathrm{0} \\ $$$${B}\:\:\:{f}\left({a}\right)\:<\mathrm{0}\:{and}\:{f}\left({b}\right)\:<\mathrm{0} \\ $$$${C}\:\:−{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:=\mathrm{0} \\ $$$${D}\:\:{f}\left({a}\right)\:>\mathrm{0}\:\:{and}\:{f}\left({b}\right)\:<\:\mathrm{0} \\ $$ Commented by…