Question Number 66225 by Rio Michael last updated on 11/Aug/19 $${Given}\:{that}\:\:\:\:\:{f}\left({x}\right)=\begin{cases}{−{x}\:+\:\mathrm{1},\:\:{x}\leqslant\:\mathrm{3}_{} }\\{{kx}\:−\mathrm{8},\:\:\:\:{x}\:>\mathrm{3}}\end{cases} \\ $$$${is}\:{continuous}\:{then}\:\:{f}\left(\mathrm{5}\right)\:=\: \\ $$$${A}\:\:\:\mathrm{2} \\ $$$${B}\:\:\:\mathrm{0} \\ $$$${C}\:\:−\mathrm{2} \\ $$$${D}\:\:−\mathrm{1} \\ $$$$ \\…
Question Number 66216 by Rio Michael last updated on 11/Aug/19 $$\mid{a}\:\mid\:=\:\mathrm{3}\:,\mid{b}\mid=\:\mathrm{5}\:,\:{a}.{b}\:=−\mathrm{14} \\ $$$$\:\:\mid{a}\:−\:{b}\mid\:=\:? \\ $$ Commented by Rasheed.Sindhi last updated on 11/Aug/19 $$\mid{a}\:\mid\:=\:\mathrm{3}\:,\mid{b}\mid=\:\mathrm{5}\:\Rightarrow{a}.{b}\:\neq−\mathrm{14} \\ $$$${a}.{b}=−\mathrm{15}\:\:{or}\:\:{a}.{b}=\mathrm{15}…
Question Number 658 by 123456 last updated on 22/Feb/15 $${proof}\:{that}\:{n}!>\left(\frac{{n}}{\mathrm{3}}\right)^{{n}} ,{n}\in\mathbb{N}^{\ast} \\ $$ Commented by 123456 last updated on 20/Feb/15 $${n}=\mathrm{1}\Rightarrow\mathrm{1}!=\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}=\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{1}} \\ $$$${n}=\mathrm{1}\Rightarrow\mathrm{0}!=\mathrm{1}>\frac{\mathrm{1}}{\mathrm{3}}\approx\mathrm{0}.\mathrm{33} \\ $$$${n}=\mathrm{2}\Rightarrow\mathrm{2}!=\mathrm{2}>\frac{\mathrm{4}}{\mathrm{9}}=\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}}…
Question Number 66160 by Tanmay chaudhury last updated on 09/Aug/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66149 by Rio Michael last updated on 09/Aug/19 $${f}\left({x}\right)\:=\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}\: \\ $$$${show}\:{that}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{roots}\:{between} \\ $$$$\mathrm{1}\:{and}\:\mathrm{2} \\ $$ Answered by MJS last updated on 09/Aug/19…
Question Number 131686 by Dwaipayan Shikari last updated on 07/Feb/21 $$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{coth}\left({n}\pi\right)}{{n}^{\mathrm{3}} } \\ $$ Commented by Dwaipayan Shikari last updated on 07/Feb/21 $${I}\:{have}\:{found}\:\frac{\mathrm{7}\pi^{\mathrm{3}}…
Question Number 66140 by AnjanDey last updated on 09/Aug/19 $$\mathrm{1}.\boldsymbol{{Show}}\:\boldsymbol{{that}}:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {f}\left(\mathrm{sin}\:\mathrm{2}{x}\right)\mathrm{sin}\:{x}\:{dx}=\sqrt{\mathrm{2}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {f}\left(\mathrm{cos}\:\mathrm{2}{x}\right)\mathrm{cos}\:{x}\:{dx}. \\ $$$$\mathrm{2}.\boldsymbol{{If}}\:\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)=\frac{\boldsymbol{{d}}}{\boldsymbol{{dz}}}\left\{\mathrm{5}^{\mid\boldsymbol{{f}}\left(\boldsymbol{{z}}\right)\mid} \right\}\:\:\boldsymbol{{then}}\:\boldsymbol{{what}}\:\boldsymbol{{is}}\:\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{f}}'\left(\boldsymbol{{e}}\right)? \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 612 by 123456 last updated on 08/Mar/15 $${encontre}\:{f}:\mathbb{N}\rightarrow\mathbb{N}\:{sobrejetivo}\:{tal}\:{que} \\ $$$${f}^{−\mathrm{1}} \left({n}\right)=\left\{{m}\mid{f}\left({m}\right)={n}\right\}\:{e}\:{infinito} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 66116 by Rio Michael last updated on 09/Aug/19 $${Given}\:{that}\:\:{f}\left({x}\right)\:=\:\begin{cases}{{x},\:\:{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}}\\{\mathrm{0},\:{for}\:\mathrm{2}\leqslant{x}\leqslant\mathrm{3}}\end{cases} \\ $$$${is}\:{periodic}\:{with}\:{period}\:\mathrm{3}\:{units}, \\ $$$${find}\:{the}\:{value}\:{of}\:\:{f}\left(\mathrm{5}\right)\:{and}\:{f}\left(−\mathrm{5}\right) \\ $$$${sketch}\:{the}\:{graph}\:{of}\:{f}\left({x}\right)\:{for}\:{x}\:{between}\:−\mathrm{3}\:{and}\:\mathrm{6} \\ $$$$ \\ $$$${please}\:{i}\:{really}\:{need}\:{explanations}\:{when}\:{solving}\:{the}\:{first}\:{part}\:{of}\:{the}\:{question} \\ $$$${thanks} \\ $$…
Question Number 66115 by Rio Michael last updated on 09/Aug/19 $$\:{find}\:\mid{z}\mid\:\:{where}\:{z}\:=\:\frac{\left(\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\right)^{\mathrm{3}} }{\left(\mathrm{1}−{i}\right)^{\mathrm{3}} } \\ $$$${find}\:{the}\:{maximum}\:{value}\:{of}\:\:\:\mathrm{12}{sinx}\:−\:\mathrm{5}{cosx} \\ $$ Commented by mathmax by abdo last updated on…