Question Number 56565 by tanmay.chaudhury50@gmail.com last updated on 18/Mar/19 $${It}\:{is}\:{my}\:{kind}\:{request}\:{to}\:{those}\:{who}\:{post}\:{questions} \\ $$$$…{pls}\:{go}\:{through}\:{the}\:{details}\:{of}\:{answer}…{and}\:{give} \\ $$$${feed}\:{back}…{pls}\:{activate}\:{yourselves}\:{to}\:{pay}\:{your} \\ $$$${attention}\:{in}\:{the}\:{details}\:{of}\:{answer}…{do}\:{not}\:{become} \\ $$$${self}\:{satisfied}\:{by}\:{getting}\:{your}\:{desired}\:{results}.. \\ $$$${unfurl}\:{your}\:{mind}\:{and}\:{act}\:{in}\:{such}\:{away}\:{that} \\ $$$${we}\:{get}\:{a}\:{tip}\:{of}\:{iceberg}\:{of}\:{your}\:{satisfation}.{Tanmay} \\ $$ Commented…
Question Number 187639 by LowLevelLump last updated on 19/Feb/23 Commented by a.lgnaoui last updated on 19/Feb/23 $${The}\:{question}\:{is}\:{like} \\ $$$${v}_{{n}+\mathrm{1}} −{v}_{{n}} ={a}_{{n}+\mathrm{1}} −{a}_{{n}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\:\frac{{S}_{{n}}…
Question Number 122069 by Dwaipayan Shikari last updated on 13/Nov/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt[{\mathrm{97}}]{{x}^{\mathrm{96}} −{x}^{\mathrm{97}} }}{dx} \\ $$ Answered by mindispower last updated on 14/Nov/20 $$=\int_{\mathrm{0}}…
Question Number 56524 by Sr@2004 last updated on 18/Mar/19 Commented by Sr@2004 last updated on 18/Mar/19 $${please}\:{solve}\:\mathrm{13}\:{and}\mathrm{15} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on…
Question Number 187568 by a.lgnaoui last updated on 18/Feb/23 $${determiner}\:{la}\:{vitesse}\:{au}\left[{ponr}\:{A}\right. \\ $$$${le}\:{temps}\:{mis}\:{par}\:{la}\:{balle}\:{pour} \\ $$$${passer}\:{de}\:{Oa}\:{E}\:{v}_{\mathrm{0}} =\mathrm{5}{m}/{s} \\ $$ Commented by a.lgnaoui last updated on 18/Feb/23 Terms…
Question Number 122023 by Dwaipayan Shikari last updated on 13/Nov/20 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {F}_{{n}} }{\mathrm{7}^{{n}} }\:\:\:\:\:\:\left({F}_{{n}} \:{denotes}\:{Fibbonocci}\:{sequence}\right) \\ $$ Answered by mr W last updated…
Question Number 122013 by Dwaipayan Shikari last updated on 13/Nov/20 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{24}}} {log}\left({tan}\theta\right){d}\theta \\ $$$${Problem}\:{source}:\:{brilliant} \\ $$ Commented by Dwaipayan Shikari last updated on 13/Nov/20…
Question Number 56467 by ajfour last updated on 17/Mar/19 $${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${Transform}\:{to}\: \\ $$$$\:\:\:{t}^{\mathrm{3}} +{k}=\mathrm{0}\:. \\ $$ Answered by ajfour last updated on…
Question Number 121983 by Dwaipayan Shikari last updated on 13/Nov/20 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx}\:\left({In}\:{closed}\:{form}\right)\:\:\left({n}\in\mathbb{N}\right) \\ $$ Commented by Dwaipayan Shikari last updated on 13/Nov/20 $${I}\:{have}\:{found}…
Question Number 187504 by Noorzai last updated on 18/Feb/23 Commented by mr W last updated on 18/Feb/23 $${when}\:{you}\:{even}\:{understand}\:\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{ln}\:{x}}{{x}^{\mathrm{6}} −\mathrm{1}}{dx}, \\ $$$${do}\:{you}\:{really}\:{need}\:{help}\:{even}\:{for}\:{this}\: \\ $$$${kindergarten}\:{question}?…