Menu Close

Category: Permutation and Combination

there-are-32-students-in-a-class-for-each-competition-in-a-sport-event-in-the-school-each-class-can-send-a-team-with-three-students-if-no-two-students-may-be-in-the-same-team-for-more-than-one-time

Question Number 222192 by mr W last updated on 22/Jun/25 $${there}\:{are}\:\mathrm{32}\:{students}\:{in}\:{a}\:{class}.\:{for} \\ $$$${each}\:{competition}\:{in}\:{a}\:{sport}\:{event}\: \\ $$$${in}\:{the}\:{school}\:{each}\:{class}\:{can}\:{send} \\ $$$${a}\:{team}\:{with}\:{three}\:{students}.\:{if}\:{no} \\ $$$${two}\:{students}\:{may}\:{be}\:{in}\:{the}\:{same} \\ $$$${team}\:{for}\:{more}\:{than}\:{one}\:{time},\:{in} \\ $$$${how}\:{many}\:{different}\:{competitions}\: \\ $$$${can}\:{this}\:{class}\:{participate}?…

Question-220877

Question Number 220877 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 20/May/25 $$\left({a}\right)\:\left({n}+\mathrm{2}\right)!+\left({n}+\mathrm{1}\right)!+{n}! \\ $$$$=\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}!+\left({n}+\mathrm{1}\right){n}!+{n}! \\ $$$$={n}!\left(\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right)+\left({n}+\mathrm{1}\right)+\mathrm{1}\right) \\ $$$$\left.={n}!\left\{\:\left({n}+\mathrm{1}\right)\left({n}+\mathrm{3}\right)+\mathrm{1}\right)\right\} \\ $$$$={n}!\left({n}^{\mathrm{2}}…

Question-220876

Question Number 220876 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 20/May/25 $$\left({a}\right)\:\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n} \\ $$$$\:\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}\left({n}−\mathrm{1}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$$$\:\:\:\:\:=\frac{\left({n}+\mathrm{2}\right)!}{\left({n}−\mathrm{1}\right)!} \\ $$ Commented by…

Question-220878

Question Number 220878 by Spillover last updated on 20/May/25 Answered by Rasheed.Sindhi last updated on 22/May/25 $$\frac{{n}!}{\left({n}−{r}\right)!{r}!}+\frac{\mathrm{2}×{n}!}{\left({n}−{r}+\mathrm{1}\right)!\left({r}−\mathrm{1}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{2}\right)!\left({r}−\mathrm{2}\right)!} \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!{r}\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)!}+\frac{\mathrm{2}×{n}!}{\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{1}\right)\left({r}−\mathrm{2}\right)!}+\frac{{n}!}{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!} \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\mathrm{1}}{{r}\left({r}−\mathrm{1}\right)}+\frac{\mathrm{2}}{\left({n}−{r}+\mathrm{1}\right)\left({r}−\mathrm{1}\right)}+\frac{\mathrm{1}}{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)+\mathrm{2}{r}\left({n}−{r}+\mathrm{2}\right)+{r}\left({r}−\mathrm{1}\right)}{{r}\left({r}−\mathrm{1}\right)\left({n}−{r}+\mathrm{2}\right)\left({n}−{r}+\mathrm{1}\right)}\right) \\ $$$$\frac{{n}!}{\left({n}−{r}\right)!\left({r}−\mathrm{2}\right)!}\left(\frac{\left({n}−{r}\right)^{\mathrm{2}}…